

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.8

Monthly EM&A Report No.8 (Period from 1 February to 28 February 2019)

(Clause 3.3, Further Environmental Permit FEP-01/429/2012/A)

Document No.

KSZHJV	/	312	/	Monthly EM&A	/	0001	/	C
Issuer		Project Code		Type of Document		Sequential No.		Revision
								Index

	Prepared by:	Certified by:	Verified by:
Name	Nelson Tsui	Robin Ho	Mandy To
Position	Environmental Team	Environmental Team Leader	Independent Environmental Checker
Signature			Mandej2.
Date:	27 Aug 20107	32-8-18	22 August 2019

[©] This document contains confidential and proprietary information belonging to Keppel Seghers - Zhen Hua Joint Venture and/or its affiliates. The contents of this document shall not be used for any other purpose than that for which they were provided. Any disclosure, copying, distribution or the taking of any action in reliance on the contents of this document is strictly prohibited. This document confers upon the recipient no right or license of whatsoever nature based on the information as described herein. If you have received this document in error, please immediately arrange for the return to Keppel Seghers - Zhen Hua Joint Venture or destruction of this document.

Revision History

C	Updated Table 4.1, Section 6.2.1, 6.4.1, 6.4.4, 7.2.1, 7.5.3 and Appendix K	27 May 2019
В	Revision based on EPD and AFCD's comments	11 April 2019
A	First Submission	14 March 2019
Rev.	DESCRIPTION OF MODIFICATION	DATE

CONTENT

1.	Basic Project Information	7
2.	Marine Water Quality Monitoring	16
3.	Noise Monitoring	32
4.	Waste	37
5.	Coral	39
6.	Marine Mammal	45
7.	White-Bellied Sea Eagle	58
8.	Summary of Monitoring Exceedance, Complaints, Notification of Summons Prosecutions	
9.	EM&A Site Inspection	68
10.	Future Key Issues	69
11.	Conclusion and Recommendations	70

Appendix A	Master Programme
Appendix B	Summary of Implementation Status of Environmental Mitigation
Appendix C	Impact Monitoring Schedule of the Reporting Month
Appendix D	Water Quality Monitoring Data
Appendix E	HOKLAS Laboratory Certificate
Appendix F	Water Quality Equipment Calibration Certificate
Appendix G	Event/ Action Plan for Water Quality Exceedance
Appendix H	Noise Monitoring Equipment Calibration Certificate
Appendix I	Event/Action Plan for Noise Exceedance
Appendix J	Noise Monitoring Data
Appendix K	Waste Flow Table
Appendix L	Event/Action Plan for Coral Monitoring
Appendix M	Event/Action Plan for White-bellied Sea Eagle Monitoring
Appendix N	Exceedance Report
Appendix O	Complaint Log
Appendix P	Impact Monitoring Schedule of Next Reporting Month

EXECUTIVE SUMMARY

Introduction

- A1. The Project, Integrated Waste Management Facility (IWMF), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (FEP No. FEP-01/429/2012/A) for the construction and operation of the Project.
- A2. In accordance with the Updated Environmental Monitoring and Audit (EM&A) Manual for the Project, EM&A works for marine water quality, noise, waste management and ecology should be carried out by Environmental Team (ET), Acuity Sustainability Consulting Limited (ASCL), during the construction phase of the Project.
- A3. This is the 8th Monthly EM&A Report, prepared by ASCL, for the Project summarizing the monitoring results and audit findings of the EM&A programme at and around Shek Kwu Chau (SKC) during the reporting period from 1 February 2019 to 28 February 2019.

Summary of Main Works Undertaken & Key Mitigation Measures Implemented

- A4. Key activities carried out in this reporting period for the Project included the following:
- Marine Site Investigation Works
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- DCM Installation Works
- Cone Penetration Test
- A5. The major environmental impacts brought by the above construction activities include:
- Water quality impact from DCM installation and laying of sand blanket
- Disturbance and possible trapping of Finless Porpoise by silt curtains
- A6. The key environmental mitigation measures implemented for the Project in this reporting period associated with the construction activities include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for DCM installation and sand blanket laying works;
- Sorting and storage of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site; and
- Implementation of cluster MMEZ (Marine Mammal Exclusion Zone) and inspection of enclosed environment within silt curtains as per DMPFP (Detailed Monitoring Programme of Finless Porpoise)

Summary of Exceedance & Investigation & Follow-up

- A7. The EM&A works for construction noise, water quality, construction waste, coral, marine mammal and White-Bellied Sea Eagle (WBSE) were conducted during the reporting period in accordance with the Updated EM&A Manual.
- A8. No exceedance of the Action or Limit Levels in relation to the construction noise, construction waste, coral and WBSE monitoring was recorded in the reporting month.
- A9. Four and one of the General & Regular DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively; twenty-four and sixty-two of the Initial Intensive DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively, where findings from investigations carried out immediately for each of the exceedance cases had showed that these exceedances were unrelated to the Project.
- A10. No project-related Action Level & Limit Level exceedance was recorded.
- A11. Weekly site inspections of the construction works by ET were carried out on 4, 13, 21 & 26 February 2019 to audit the mitigation measures implementation status. Monthly joint site inspection was carried out on 13 February 2019 by ET and IEC. Observations have been recorded in the site inspection checklists and provided to the contractors together with the appropriate follow-up actions where necessary.

Complaint Handling and Prosecution

- A12. No project-related environmental complaint was received during the reporting period.
- A13. Neither notifications of summons nor prosecution was received for the Project.

Reporting Change

A14. There were no changes to be reported that may affect the on-going EM&A programme.

Summary of Upcoming Key Issues and Key Mitigation Measures

- A15. Key activities anticipated in the next reporting period for the Project will include the following:
- Marine Site Investigation Works
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- DCM Installation Works
- Cone Penetration Test
- Dredging Works
- A16. The major environmental impacts brought by the above construction activities will include:
- Water quality impact from laying of sand blanket
- Disturbance and possible trapping of Finless Porpoise by silt curtains

- A17. The key environmental mitigation measures for the Project in the coming reporting period associated with the construction activities will include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for DCM installation, sand blanket laying works and dredging works;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
- Implementation of cluster MMEZ and inspection of enclosed environment within silt curtains as per DMPFP
- Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 –
 2.21
- Storage, handling and disposal of dredged materials according to Dumping At Sea Ordinance (DASO)

1. BASIC PROJECT INFORMATION

1.1 Background

- 1.1.1 The Government of Hong Kong SAR will develop the Integrated Waste Management Facilities (IWMF) Phase 1 (hereafter "the Project") with incineration to achieve substantial bulk reduction of unavoidable municipal solid waste (MSW) and to recover energy from the incineration process. The IWMF will be on an artificial island to be formed by reclamation at the south-western coast of Shek Kwu Chau. Keppel Seghers Zhen Hua Joint Venture (KSZHJV) was awarded the contract under Contract No. EP/SP/66/12 Integrated Waste Management Facilities Phase 1 to construct and operate the Project.
- 1.1.2 An environmental impact assessment (EIA) study for the Project has been conducted and the EIA Report was approved under the Environmental Impact Assessment Ordinance on 17 January 2012. An Environmental Permit (EP) (EP No.: EP-429/2012) was granted to EPD on 19 January 2012 for the construction and operation of the Project. Subsequently, the EP was amended (EP No.: EP-429/2012/A) and a further EP (FEP) (EP No.: FEP-01/429/2012/A) was granted to the Keppel Seghers Zhen Hua Joint Venture (KSZHJV) on 27 December 2017.
- 1.1.3 The key design and construction elements of the Project include the Design and the Works including but not limited to the design, engineering procurement, construction, testing and commissioning of the Facility including:
- Ground Treatment works;
- Seawall and Breakwater construction;
- Non-dredged Reclamation;
- Other Marine works and Harbour and Port Facilities,
- Site formation,
- Municipal Solid Waste (MSW) Treatment Processes,
- Energy Recovery for Power Generation and Surplus Electricity export,
- Wastewater treatment process,
- Desalination and water treatment process,
- Civil works;
- Building and Structural works,
- Electrical and Mechanical works,
- Building Services,
- Architectural and Landscaping works, and
- All other design and works required for the operation and maintenance of the Facility
- according to the Contract requirements
- 1.1.4 The location of the IWMF near Shek Kwu Chau (SKC) and general layout of IWMF are shown in **Figure 1.1** and **Figure 1.2** respectively.

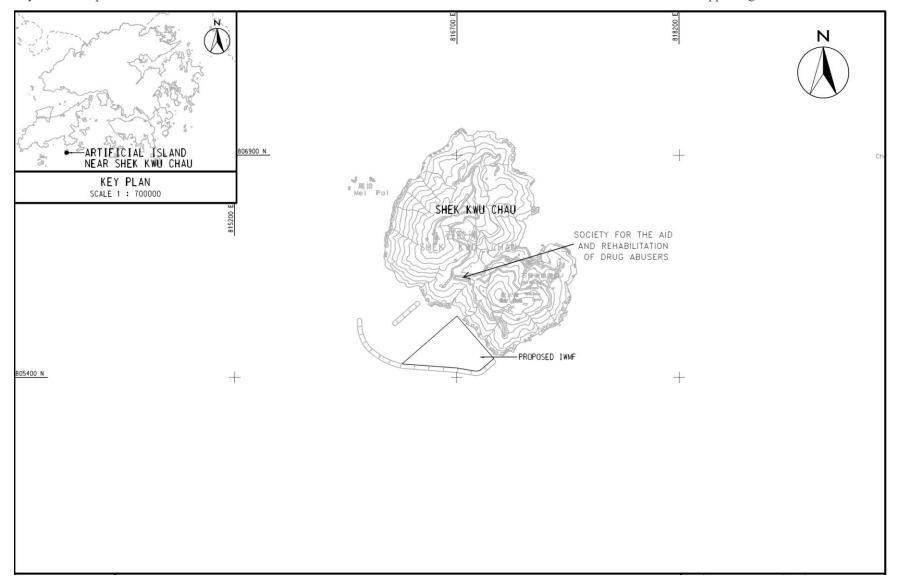


Figure 1.1 Location of the IWMF at the Artificial Island near SKC

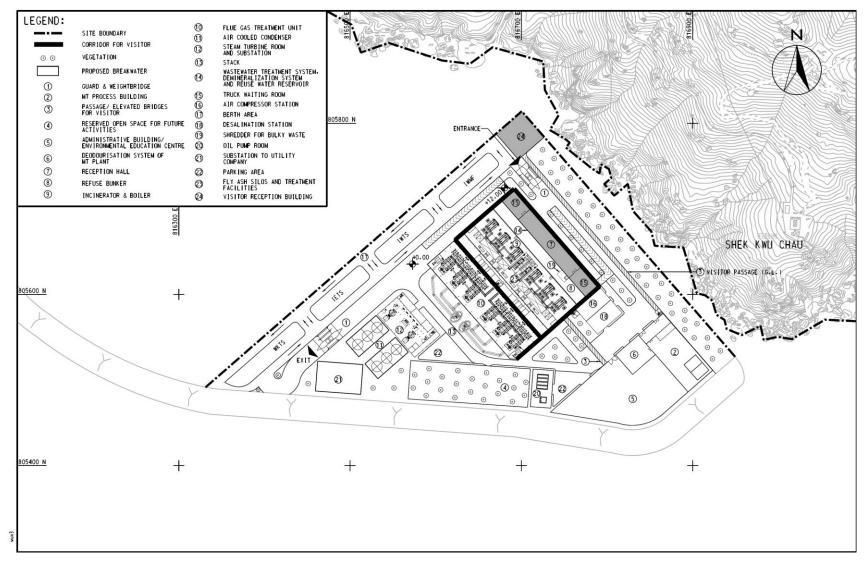
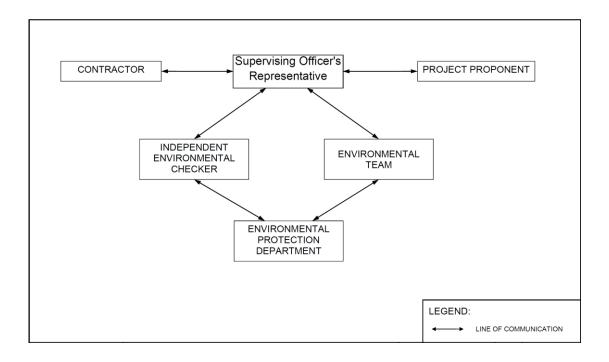



Figure 1.2 General Layout of the IWMF at the Artificial Island near SKC

- 1.2 The Reporting Scope
- 1.2.1 This is the 8th Monthly EM&A Report for the Project which summarizes the key findings of the EM&A programme during the reporting period from 1 February to 28 February 2019.
- 1.3 Project Organization
- 1.3.1 The Project Organization structure for Construction Phase is presented in **Figure 1.3**.

Figure 1.3 Project Organization Chart

1.3.2 Contact details of the key personnel are presented in **Table 1.1** below:

Table 1.1 Contact Details of Key Personnel

Party	Position	Name	Telephone no.
Keppel Seghers – Zhen Hua Joint Venture	Project Manager	Kenny Yu	2192-0606
Acuity Sustainability Consulting Limited	Environmental Team Leader	Robin Ho	2698-6833
ERM-Hong Kong, Limited	Independent Environmental Checker	Mandy To	2271-3000

1.4 Summary of Construction Works

1.4.1 Details of the major construction activities undertaken in this reporting period are shown in **Table 1.2** and **Figure 1.4** below. The construction programme is presented in **Appendix A**.

Table 1.2 Summary of the Construction Activities Undertaken during the Reporting Month

Location of works	Construction activities undertaken	Remarks on progress
Seawall and breakwater locations	Marine site investigation works	Completed
Location of DCM Site Trial	Coring of DCM samples	Completed
Seawall locations	Collecting of Marine Sediment Samples	Completed
Location of DCM Static Loading Test	DCM installation	Completed
Seawall and breakwater locations	Laying of Geotextile and Sand Blanket	 42 out of 48 geotextiles were laid On-going for sand blanket laying
Seawall and berth area	DCM installation	On-going

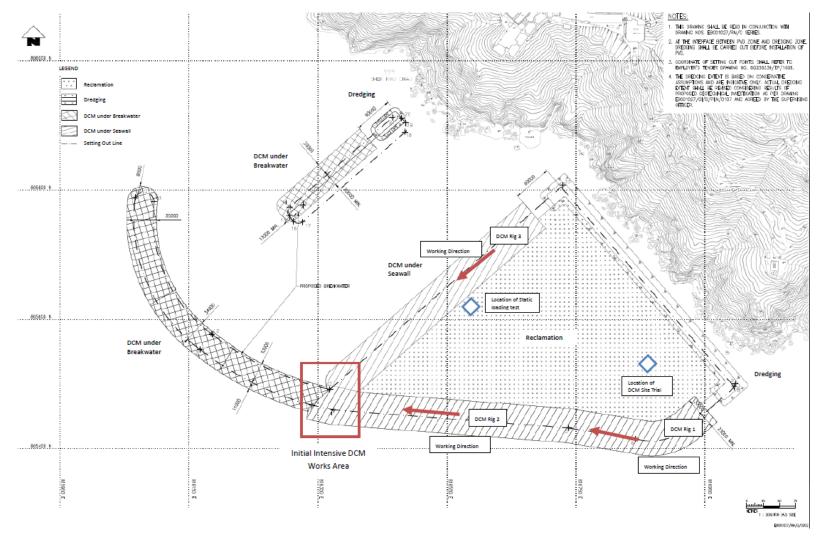


Figure 1.4 Location of Major Construction Activities Undertaken during the Reporting Month

1.5 Summary of Environmental Status

1.5.1 A summary of the valid permits, licences, and /or notifications on environmental protection for this Project is presented in **Table 1.3**

Table 1.3 Summary of the Status of Valid Environmental Licence, Notification, Permit and Documentations

Permit/ Licences/	Reference	Validity Period	Remarks
Notification			
Variation of	EP-429/2012/A	Throughout the Contract	
Environmental Permit			
Further Environmental	FEP-01/429/2012/A	Throughout the Contract	
Permit			
Notification of	Ref No.: 428778	15/12/2017-22/09/2024	
Construction Works			
under the Air			
Pollution Control			
(Construction Dust)			
Regulation (Form NA)			
Wastewater Discharge	-	-	Under
Licence			Application
	-	-	Under
			Application
Chemical Waste	WPN0017-933-K3301	Throughout the Contract	
Producer Registration	-01		
	WPN5213-961-K3301	Throughout the Contract	
	-02		
Construction Noise	GW-RS0018-19	15/01/2019 — 10/04/2019	
Permit (24 hours)			
Construction Noise	-	-	Under
Permit			Application
Billing Account for	A/C No.:7029768	Throughout the Contract	
Disposal of			
Construction Waste			
Marine Dumping	EP/MD/19-094	20/02/2019 – 19/8/2019	
Permit			

1.5.2 The status for all environmental aspects is presented **Table 1.4**.

Table 1.4 Summary of Status for Key Environmental Aspects under the Updated EM&A Manual

Parameters	Status		
Water Quality			
Baseline Monitoring under Updated EM&A Manual and Detailed Plan on DCM	The baseline water quality monitoring result has been reported in Baseline Monitoring Report and submitted to EPD under FEP Condition 3.4		
Impact Monitoring	On-going		
Regular DCM Monitoring	On-going		
Initial Intensive DCM Monitoring	On-going, being scheduled from 11 February 2019 to 10 March 2019		

Parameters	Status			
Baseline Water Quality of	Being carried out from 13 August 2018 to 7 September 2018			
wet season				
Noise				
Baseline Monitoring	The baseline niose monitoring result has been reported in			
	Baseline Monitoring Report and submitted to EPD under FEP			
	Condition 3.4			
Impact Monitoring	On-going			
	Waste Management			
Mitigation Measures in	On-going			
Waste Monitoring Plan				
	Coral			
Pre-translocation Survey	The Coral Translocation Plan was submitted and approved by			
and Coral Mapping	EPD under EP Condition 2.12			
Coral Translocation	Completed on 28 March 2018			
Post-Translocation Coral	On-going, survey affected by missing of translocated and			
Monitoring	tagged coral colonies after typhoons in September 2018			
Pre-construction Coral	Completed on 26 June 2018			
Survey and Tagging				
Tagged Coral Monitoring	Survey obstructed due to missing of tagged coral colonies after			
8	typhoons in September 2018			
Coral Survey and	Re-tagging at Indirect Impact Site was conducted on 23			
Re-tagging	November and Re-tagging at Control Site was conducted on 3			
	December 2018.			
Post Re-tagging Coral	On-going			
Monitoring				
	Marine Mammal			
Baseline Monitoring	The baseline marine mammal monitoring result has been			
	reported in Baseline Monitoring Report and submitted to EPD			
	under FEP Condition 3.4			
Impact Monitoring	On-going			
	White-bellied Sea Eagle			
Baseline Monitoring	The baseline WBSE monitoring result has been reported in			
	Baseline Monitoring Report and submitted to EPD under FEP			
	Condition 3.4			
Impact Monitoring	On-going			
	Environmental Audit			
Site Inspection covering	On-going			
Measures of Air Quality,				
Noise Impact, Water				
Quality, Waste, Ecological				
Quality, Fisheries,				
Landscape and Visual				
Mitigation Measures in	On-going			
Marine Mammal Watching				
Plan (MMWP)				
Mitigation Measures in	On-going			
Detailed Monitoring				
Programme on Finless				
Porpoise (DMPFP)				
Mitigation Measures in	On-going			
Vessel Travel Details				

- 1.5.3 Other than the EM&A works by ET, environmental briefings, trainings and regular environmental management meetings were conducted, in order to enhance environmental awareness and closely monitor the environmental performance of the contractors.
- 1.5.4 The EM&A programme has been implemented in accordance with the recommendations presented in the approved EIA Report and the Updated EM&A Manual. A summary of implementation status of the environmental mitigation measures for the construction phase of the Project during the reporting period is provided in **Appendix B**.

2. MARINE WATER QUALITY MONITORING

- 2.1 Water Quality Requirements
- 2.1.1 To ensure no adverse water quality impact, water quality monitoring is recommended to be carried out at the nearby water sensitive receivers (WSRs) during construction phase including proposed reclamation, breakwater construction, etc.
- 2.1.2 In accordance with the Updated EM&A Manual, impact water quality monitoring were conducted 3 days per week at mid-flood and mid-ebb tide to obtain impact water quality levels at the eleven monitoring stations during general water quality monitoring and fourteen monitoring stations during regular DCM monitoring for the construction period.
- 2.2 Water Quality Parameters, Time, Frequency
- 2.2.1 Dissolved Oxygen (DO), Turbidity, Suspended Solids (SS), Salinity and pH have been undertaken at the eleven monitoring stations during general water quality monitoring. Beside the above parameters, monitoring for Total Alkalinity, Current Velocity and Current Direction have been undertaken at all fourteen monitoring stations (including S1, S2 and S3) during regular DCM monitoring. While the same parameters monitored during regular DCM monitoring have been undertaken at twelve immediate upstream and downstream area to the DCM works location during intensive DCM monitoring. Intensive DCM monitoring was conducted on 11 to 24, 26, 28 February 2019.
- 2.2.2 Current velocity and direction, DO, temperature, salinity, turbidity and pH have been measured in-situ and the SS, Total Alkalinity have been assayed in a HOKLAS laboratory.
- 2.2.3 In associate with the water quality parameters, other relevant data were also measured, such as monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or work underway nearby were also recorded. The monitoring schedule is provided in **Appendix C**.
- 2.2.4 Impact water quality monitoring was conducted 3 days per week in the reporting period. All parameters were monitored during mid-flood and mid-ebb tides at three water depths for general water quality monitoring. The interval between two sets of monitoring has not been less than 36 hours.
- 2.2.5 The initial intensive DCM monitoring programme has been conducted daily from 11-24 February 2019, and conducted every two days from 25-28 February 2019. The actual duration of the initial DCM monitoring might extend beyond four weeks should there be any exceedances in specific-DCM parameters (Temperature & Alkalinity) of water quality action and limit levels.
- 2.2.6 **Table 2.1** summarizes the monitoring parameters, frequency and duration of the impact water quality monitoring during construction phase.

Table 2.1 Water Quality Monitoring Parameters, Frequency and Duration

Parameter, unit	Frequency	No. of Depths	
Water Depth(m)Temperature(°C)Salinity(ppt)	General water quality monitoring and Regular DCM monitoring:	3 water depths: 1m below sea surface, mid-depth and 1m above sea bed.	

Parameter, unit	Frequency	No. of Depths
pH (pH unit)Dissolved Oxygen	3 days per week, at mid-flood and mid-ebb tides	If the water depth is less than 3m, mid-depth sampling only.
 (DO)(mg/L and % of saturation) Turbidity(NTU) Suspended Solids (SS), mg/L Total alkalinity Current velocity Direction 	*Intensive DCM monitoring: Daily in first 2 weeks, at mid-flood and mid-ebb tides. if no exceedance is recorded within the first two weeks, then the monitoring frequency can be reduced to every two days.	If water depth less than 6m, mid-depth may be omitted.

Note: *Exceedances referred to total alkalinity and temperature only. These should be confirmed by ET and verified by IEC as project-related.

2.3 Water Quality Monitoring Locations

2.3.1 Impact water quality monitoring was conducted at eleven monitoring locations (B1-B4, H1, C1, C2, F1, CR1, CR2 & M1) during general water quality monitoring and was conducted at fourteen water monitoring locations (B1-B4, H1, C1, C2, F1, S1-S3, CR1, CR2 & M1) during regular DCM monitoring, as shown in **Figure 2.1**. Initial intensive DCM water quality monitoring was conducted at twelve monitoring locations (UC1-UC2 & I1-I10) while UC1 & UC2 were representative upstream control stations and I1 to I10 were impact downstream stations as shown in **Figure 2.2**.

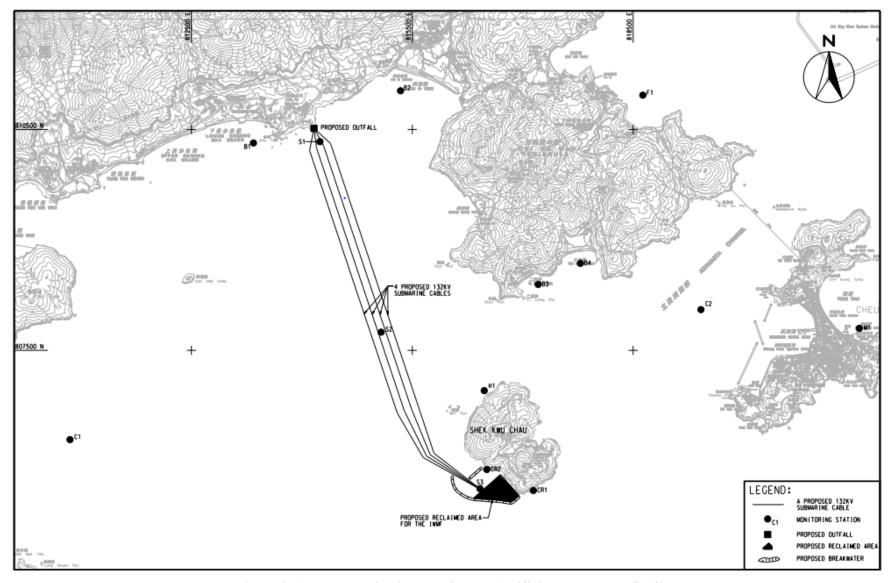


Figure 2.1 Water monitoring locations at Artificial Island near SKC

- 2.3.2 B1 to B4 are located at 4 beaches respectively at the southern shore of Lantau Island. Monitoring station H1 is located at the horseshoe crab habitat at northern SKC, while CR1 and CR2 are located at the coral communities at southwestern shore of SKC. Monitoring station F1 is located at the Cheung Sha Wan Fish Culture Zone while monitoring station M1 is located at Tung Wan at Cheung Chau. S1, S2 and S3 are located at the northern landing site, midway and southern landing site of the proposed submarine cable, respectively. S1, S2 and S3 are required for monitoring due to the laying of submarine cable. Control stations C1 and C2 at far field locations are for comparison.
- 2.3.3 Fourteen monitoring stations are listed in **Table 2.2**:

Table 2.2 - Locations of Marine Water Quality Stations

Monitoring station	Description	Easting	Northing
B1	Beach - Cheung Sha Lower	813342	810316
B2	Beach - Pui O	815340	811025
В3	Beach - Yi Long Wan	817210	808395
B4	Beach - Tai Long Wan	817784	808682
H1	Horseshoe Crab - Shek Kwu Chau	816477	806953
C1	Control Station	810850	806288
C2	Control Station	819421	808053
F1	Cheung Sha Wan Fish Culture Zone	818631	810966
S1	Submarine Cable Landing Site	814245	810335
S2	Submarine Cable	815076	807747
S3	Submarine Cable Landing Site	816420	805621
CR1	Coral	817144	805597
CR2	Coral	816512	805882
M1	Tung Wan	821572	807799

- 2.3.4 For initial intensive DCM monitoring, mobile impact monitoring stations shall be located within fixed distances from the DCM group works area to obtain water quality information in the immediate upstream and downstream area. A total of 12 nos. monitoring stations will be deployed with the following arrangement and illustrated in **Figure 2.2**:
- Two monitoring stations upstream and at 150 m envelope of DCM group works area (Representative Control stations).
- Five monitoring stations downstream and at 150 m envelope of DCM group works area (Impact 1 stations).
- Five monitoring stations downstream and at 250 m envelope of DCM group works area (Impact 2 stations).
- Monitoring stations should be at least 50 m apart;
- Downstream monitoring stations should be perpendicular to the tidal direction.

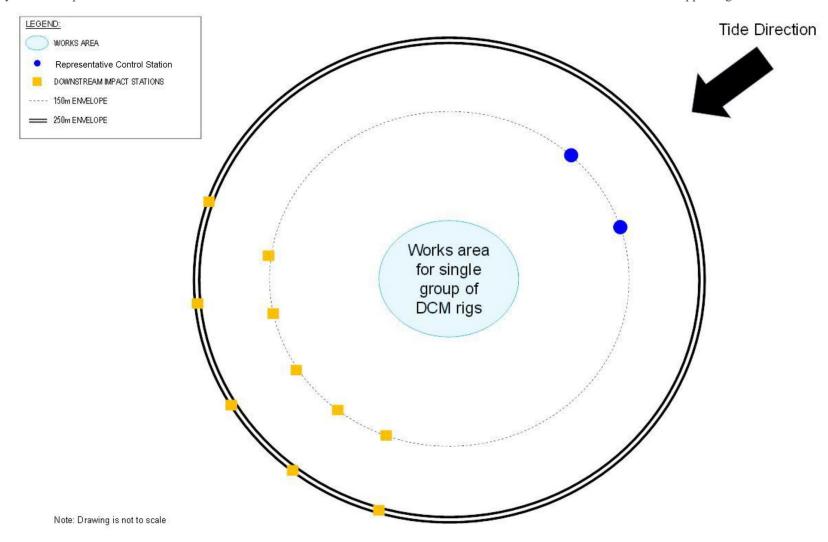


Figure 2.2 Water monitoring locations during intensive DCM monitoring

2.4 Impact Monitoring Methodology

- 2.4.1 General water quality monitoring was conducted three days per week, at mid-flood and mid-ebb tides, at the designated water quality monitoring stations during the reporting period. Initial intensive DCM monitoring was performed daily in first 2 weeks, at mid-flood and mid-ebb tides, at the mobile impact monitoring stations locating within fixed distances from the DCM group works in the immediate upstream and downstream area.
- 2.4.2 The interval between 2 sets of monitoring was not less than 36 hours except for initial intensive DCM monitoring. Sampling was collected at three water depths, namely, 1m below water surface, mid-depth and 1m above seabed, except where the water depth is less than 6m, the mid-depth was omitted. If the water depth was less than 3m, only the mid-depth station was monitored.
- 2.4.3 All observations and results were recorded in the data record sheets in **Appendix D**. Duplicate in-situ measurements and water sampling were carried out in each sampling event. The monitoring probes were retrieved out of water after the first measurement and then redeployed for the second measurement. When the difference in value between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

In-situ Measurement

2.4.4 Levels of DO, pH, temperature, turbidity and salinity would be measured in-situ by portable and weatherproof measuring instrument, e.g. YSI ProDSS and Horiba U-53 Multiparameter complete with cable and sensor. (Refer for http://www.ysi.com/ProDSS YSI ProDSS technical specification http://www.horiba.com/process-environmental/products/water-treatment-environment /details/u-50-multiparameter-water-quality-checker-368/ for Horiba U-53 technical specification). Water current velocity and Water Current direction would be measured by portable and weatherproof current meter, e.g. SonTek Hydrosurveyor (Refer to https://www.sontek.com/media/pdfs/riversurveyor-s5-m9-brochure.pdf for SonTek Hydrosurveyor M9 technical specification). Parameters measured by in-situ measurement is tabulated in **Table 2.3**

Resolution **Parameter** Range Temperature 0.1 °C -5-70 °C Dissolved Oxygen (DO) 0.01 mg/L0-50.0 mg/L Turbidity 0.1 NTU 0-1000 NTU pH 0-14 $0.01 \, \mathrm{pH}$ pН Salinity 0.01 ppt 0-40 ppt Water Current Velocity 0.001 m/s $\pm 20 \text{m/s}$ Water Current Direction $\pm 1^{o}$ $\pm 2^{\circ}$

Table 2.3 - Parameters Measured by In-situ Measurement

Laboratory Analysis

2.4.5 Analysis of Total Alkalinity and SS should be carried out in a HOKLAS accredited laboratory, as shown in **Appendix E**. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory determinations. The determination work should be started within 24 hours after collection of the water

Keppel Seghers – Zhen Hua Joint Venture

samples. Analytical methods and detection limits for SS and total alkalinity are present in **Table 2.4**.

Table 2.4 - Analytical Methods Applied to Water Quality Samples

Parameter	Analytical method	Detection Level
Suspended Solids, SS	APHA 2540 D _i	1 mg/L
Total Alkalinity	APHA 2320	0.01 mg/L

Footnote:

 "APHA 2540 D" stands for American Public Health Association Standard Methods for the Examination of Water and Wastewater. 23rd Edition.

Field Log

2.4.6 Other relevant data was recorded, such as: monitoring location / position, time, water depth, weather conditions and any special phenomena underway near the monitoring station.

2.5 Monitoring Equipment

2.5.1 Equipment used in the impact water quality monitoring programme is summarized in **Table 2.5** below. Calibration certificates for the water quality monitoring equipment are attached in **Appendix F**.

Table 2.5 Impact Water Quality Monitoring Equipment

Monitored Parameter	Equipment	Brand and Model
DO, Temperature, Salinity,	Multi-functional Meter	YSI ProDSS
pH and Turbidity		
Coordinates	Positioning Equipment	Garmin GPSMAP 78s
Water depth	Water Depth Detector	Hummingbird 160 Portable
SS	Water Sampler	Wildco 2 L Water Sampler
		with messenger

2.5.2 Dissolved Oxygen and Temperature Measuring Equipment

The instrument was a portable and weatherproof DO probe mounted on the multi-functional meter complete with cable and sensor, and use a DC power source. The equipment was capable of measuring:

- A DO level in the range of 0 50 mg/L; and
- Temperature of -5 70 degree Celsius.

2.5.3 Turbidity Measurement Instrument

The instrument was a portable and weatherproof turbidity-measuring probe mounted on the multi-functional meter using a DC power source. It had a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU.

2.5.4 pH Measurement Instrument

The probe was consisted of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device mounted on the multi-functional meter. It was readable to 0.1 pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

2.5.5 Salinity Measurement Instrument

A portable salinometer mounted on the multi-functional meter capable of measuring salinity in the range of 0-40 parts per thousand (ppt) was provided for measuring salinity of the water at each monitoring location.

2.5.6 Sampler

The water sampler comprised a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

2.5.7 Sample Containers and Storage

Water samples for SS were stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen) and delivered to the laboratory and analysed as soon as possible after collection. Sufficient volume of samples was collected to achieve the detection limit stated in **Table 2.4**.

2.5.8 Water Depth Detector

A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station. This unit could either be hand held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

2.5.9 Monitoring Position Equipment

Hand-held digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office) was provided and used to ensure that the water sampling locations were correct during the water quality monitoring work.

2.6 Maintenance and Calibration

- 2.6.1 The multi-functional meters were checked and calibrated before use. Multi-functional meters were certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at three monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before commencement of monitoring and after completion of all measurements each day. Calibration was not conducted at each monitoring location as daily calibration is adequate for the type of DO meter employed.
- 2.6.2 Sufficient stocks of spare parts were provided and maintained for replacements when necessary. Backup monitoring equipment was prepared for uninterrupted monitoring during equipment maintenance or calibration during monitoring.

2.7 Action and Limit Levels

2.7.1 The Action and Limit Levels have been set based on the derivation criteria specified in the Updated EM&A Manual and Detailed DCM Plan, as shown in Table 2.6 below.

Table 2.6 Criteria of Action and Limit Levels for Water Quality

Parameters	Action	Limit					
Construction Phase Impact Monitoring							
DO in mg/L	≤ 5 %-ile of baseline data	≤ 4					
SS in mg/L	≥ 95 %-ile of baseline data or 120%	≥ 99 %-ile of baseline data or 130% of					
	of control station's SS at the same	control station's SS at the same tide of					
	tide of the same day of	the same day of measurement,					
	measurement, whichever is higher	whichever is higher					
Turbidity in NTU	≥ 95 %-ile of baseline data or 120%	≥ 99 %-ile of baseline data or 130% of					
	of control station's turbidity at the	control station's turbidity at the same					
	same tide of the same day of	tide of the same day of measurement,					
	measurement, whichever is higher	whichever is higher					
Temperature in°C	1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day					
Total Alkalinity in mg/L	≥ 95 %-ile of baseline data or 120% of representative control station at the same tide of the same day, whichever is higher	≥ 99 %-ile of baseline data or 130% of representative control station at the same tide of the same day, whichever is higher					

2.7.2 Based on the baseline monitoring data and the derivation criteria specified above, the Action/Limit Levels have been derived and are presented in **Table 2.7** and **Table 2.8** for both dry seasons (October – March) and wet seasons (April – September).

Table 2.7 Derived Action and Limit Levels for Water Quality Monitoring (Dry Season)

Parameters	Action	Limit						
Construction Phas	Construction Phase Impact Monitoring							
DO in mg/L	≤ 7.13	≤ 4						
SS in mg/L	≥ 8 or 120% of control station's SS	\geq 10 or 130% of control station's SS at						
	at the same tide of the same day of	the same tide of the same day of						
	measurement, whichever is higher	measurement, whichever is higher						
Turbidity in NTU	\geq 5.6 or 120% of control station's	≥ 12.8 or 130% of control station's						
	turbidity at the same tide of the same	turbidity at the same tide of the same						
	day of measurement, whichever is	day of measurement, whichever is						
	higher	higher						
Temperature in °C	1.8°C above the temperature	2°C above the temperature recorded at						

Parameters	Action	Limit
	recorded at representative control station at the same tide of the same day	representative control station at the same tide of the same day
Total Alkalinity	≥116 or 120% of control station's	≥ 118 or 130% of control station's
in mg/L	Total Alkalinity at the same tide of	Total Alkalinity at the same tide of the
	the same day of measurement,	same day of measurement, whichever
	whichever is higher	is higher

Notes:

- i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- iii. For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 2.8 Derived Action and Limit Levels for Water Quality (Wet Season)

Parameters	Action	Limit					
Construction Phase Impact Monitoring							
DO in mg/L	≤ 5.28	≤ 4					
SS in mg/L	≥ 12 or 120% of control station's SS	\geq 14 or 130% of control station's SS at					
	at the same tide of the same day of	the same tide of the same day of					
	measurement, whichever is higher	measurement, whichever is higher					
Turbidity in NTU	\geq 4.0 or 120% of control station's	\geq 4.3 or 130% of control station's					
	turbidity at the same tide of the same	turbidity at the same tide of the same					
	day of measurement, whichever is	day of measurement, whichever is					
	higher	higher					
Temperature in °C	1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day					
Total Alkalinity	≥ 116 mg/L or 120% of	≥ 118 mg/L or 130% of representative					
in mg/L	representative control station at the	control station at the same tide of the					
	same tide of the same day,	same day, whichever is higher					
Notes	whichever is higher						

Notes:

- i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than
 the limits.
- 2.7.3 The Action and Limit (AL) levels for DCM-specific and other water quality parameters during initial intensive DCM monitoring with referring to Detailed Plan on Deep Cement Mixing, as shown in **Table 2.9 and 2.10** below respectively.

Table 2.9 Action and Limit Levels for DCM-specific Water Quality Parameters (Intensive DCM Monitoring)

Parameters	Action	Limit						
Construction Phas	Construction Phase Impact Monitoring							
Temperature in °C	1.8°C above the temperature	2°C above the temperature recorded at						
	recorded at representative control	representative control station at the						
	station at the same tide of the same	same tide of the same day						
	day							
Total Alkalinity	95 percentile of baseline data or	99 percentile of baseline data or 130%						
in mg/L	120% of representative control	of representative control station at the						
	station at the same tide of the same	same tide of the same day, whichever						
	day, whichever is higher	is higher						

Notes:

- i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- For Temperature and Total Alkalinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 2.10 Action and Limit Levels for Other Water Quality Parameters (Intensive DCM Monitoring)

Parameters	Action	Limit							
Construction Phas	Construction Phase Impact Monitoring								
DO in mg/L	80% of representative control station	70% of representative control station at							
(Surface and	at the same tide of the same day or	the same tide of the same day or							
middle)	4mg/L, whichever is lower.	4mg/L, whichever is lower.							
DO in mg/L	80% of representative control station	70% of representative control station at							
(Bottom)	at the same tide of the same day or	the same tide of the same day or							
	2mg/L, whichever is lower.	2mg/L, whichever is lower.							
SS in mg/L	120% of representative control	130% of representative control station							
	station at the same tide of the same	at the same tide of the same day.							
Turbidity in NTU	day.								

Notes:

- i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- For SS and Turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 2.7.4 If exceedances were found during water quality monitoring, the actions in accordance with the Event and Action Plan shall be carried out according to **Appendix G**.
- 2.8 Monitoring Results and Observations
- 2.8.1 During the reporting period, general water quality monitoring was conducted on 11, 13, 15, 18, 20, 22, 25 & 27 February 2019 at all eleven monitoring stations and regular DCM monitoring including monitoring stations S1, S2 & S3 were conducted

on 1, 4 & 8 February 2019. Monitoring results of 7 key parameters: Salinity, DO, turbidity, SS, pH, temperature and total alkalinity for general water quality and regular DCM monitoring in this reporting month, are summarized in **Table 2.11**, and details results are presented in **Appendix D**. During the reporting period, initial intensive DCM water quality monitoring 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28 February 2019 at all twelve monitoring stations consisting of UC1, UC2 and I1 to I10. Monitoring results of 7 key parameters: Salinity, DO, turbidity, SS, pH, temperature and total alkalinity for initial intensive DCM monitoring in this reporting month, are summarized in **Table 2.12**, and details results are presented in **Appendix D**.

Table 2.11 Summary of Impact Water Quality Monitoring Results

	Parameters								
Loca	ations	Salinity (ppt)	Dissolved (mg Surface & Middle		рН	Turbidity (NTU)	Suspended Solids (mg/L)	Temp.	Total Alkalinity (mg/L) note ii
	Avg.	30.70	10.48	10.52	8.43	3.4	4.28	21.2	111.8
B1	Min.	29.36	8.70	8.56	8.01	1.2	2.00	19.8	110.0
	Max.	32.94	13.43	14.06	9.17	4.8	10.00	22.8	113.0
	Avg.	30.71	10.59	10.61	8.40	3.4	3.88	21.2	111.8
B2	Min.	29.11	8.57	8.59	8.01	1.2	2.00	19.8	110.0
	Max.	33.77	14.01	13.77	9.14	4.9	9.00	22.8	113.0
	Avg.	30.85	10.65	10.62	8.43	3.4	4.21	21.1	111.8
В3	Min.	29.37	8.67	8.54	8.00	1.1	2.00	19.8	110.0
	Max.	33.61	13.87	13.75	9.15	5.0	8.00	22.8	113.0
	Avg.	30.62	10.48	10.44	8.43	3.4	4.52	21.2	111.9
B4	Min.	29.11	8.69	8.70	8.00	1.0	2.00	19.8	110.0
	Max.	33.28	13.46	13.99	9.16	4.6	9.00	22.8	114.0
	Avg.	30.73	10.71	10.76	8.45	3.3	4.12	21.2	111.6
C1	Min.	29.12	8.57	8.58	8.00	1.3	2.00	19.8	110.0
	Max.	33.85	13.88	13.79	9.17	4.8	12.00	22.8	113.0
	Avg.	30.62	10.53	10.54	8.43	3.3	4.44	21.2	111.8
C2	Min.	29.18	8.57	8.76	8.01	1.3	2.00	19.8	110.0
	Max.	33.87	13.91	14.01	9.17	5.1	9.00	22.8	113.0
CD 4	Avg.	30.71	10.63	10.61	8.43	3.3	4.08	21.2	112.0
CR1	Min.	29.06	8.56	8.55	8.00	1.2	2.00	19.8	111.0
	Max.	33.24	13.94	13.98	9.17	4.9	8.00	22.8	113.0
CDA	Avg.	30.61	10.31	10.40	8.44	3.3	4.48	21.1	111.9
CR2	Min.	29.09	8.70	8.75	8.00	1.2	2.00	19.8	111.0
	Max.	33.86	13.71	13.44	9.17	4.8	12.00	22.8	113.0
F1	Avg.	30.82	10.40	10.40	8.42	3.3	4.27	21.2	111.9
ГІ	Min.	29.45	8.59	8.56	8.00	1.0	2.00	19.8	111.0
	Max.	33.59	13.61	13.48	9.15	4.9	9.00	22.8	113.0
H1	Avg.	30.79	10.61	10.58	8.42	3.3 1.2	4.40 2.00	21.2	111.8
111	Min. Max.	29.42 33.84	8.57 14.07	8.59 13.61	8.00 9.17	4.8	10.00	19.8 22.8	110.0 114.0
	Avg.	30.71	10.61	10.61	8.42	3.3	4.66	21.2	114.0
M1	Min.	29.42	8.55	8.60	8.00	1.0	2.00	19.8	111.9
1411	Max.	33.71	13.82	13.29	9.13	5.1	15.00	22.8	113.0
	Avg.	30.56	10.97	10.94	8.23	3.1	4.63	21.6	111.9
S1	Min.	29.71	10.06	10.22	8.01	1.1	2.00	20.6	111.0
	Max.	31.79	11.96	11.65	8.46	4.0	10.00	22.7	113.0
62	Avg.	30.66	10.85	10.92	8.27	3.1	5.31	21.6	111.9
S2	Min.	29.73	9.88	10.20	8.03	1.2	3.00	20.6	111.0
	Max.	31.79	11.66	11.75	8.49	4.0	9.00	22.7	114.0
62	Avg.	30.69	11.05	11.01	8.24	3.3	5.43	21.6	111.8
S3	Min.	29.82	9.99	10.01	8.02	1.2	2.00	20.6	110.0
	Max.	31.70	12.14	12.17	8.50	3.9	9.00	22.7	113.0

Notes:

 [&]quot;Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Total alkalinity test only conducted on DCM working day with referring master programme in Appendix A.

iii. Monitoring at S1, S2 and S3 shall only be conducted during DCM work period referring to master programme in **Appendix A**.

Table 2.11 Summary of Intensive DCM Water Quality Monitoring Results

						Parameters			
Loca	ations	Salinity	Dissolved (mg		pН	Turbidity	Suspended Solids	Temp.	Total Alkalinity
		(ppt)	Surface & Middle	Bottom	рп	(NTU)	(mg/L)	(°C)	(mg/L)
	Avg.	30.70	10.48	10.52	8.43	3.4	4.28	21.2	111.8
UC1	Min.	29.36	8.70	8.56	8.01	1.2	2.00	19.8	110.0
	Max.	32.94	13.43	14.06	9.17	4.8	10.00	22.8	113.0
	Avg.	30.71	10.59	10.61	8.40	3.4	3.88	21.2	111.8
UC2	Min.	29.11	8.57	8.59	8.01	1.2	2.00	19.8	110.0
	Max.	33.77	14.01	13.77	9.14	4.9	9.00	22.8	113.0
	Avg.	30.85	10.65	10.62	8.43	3.4	4.21	21.1	111.8
I1	Min.	29.37	8.67	8.54	8.00	1.1	2.00	19.8	110.0
	Max.	33.61	13.87	13.75	9.15	5.0	8.00	22.8	113.0
	Avg.	30.62	10.48	10.44	8.43	3.4	4.52	21.2	111.9
I2	Min.	29.11	8.69	8.70	8.00	1.0	2.00	19.8	110.0
	Max.	33.28	13.46	13.99	9.16	4.6	9.00	22.8	114.0
	Avg.	30.73	10.71	10.76	8.45	3.3	4.12	21.2	111.6
I3	Min.	29.12	8.57	8.58	8.00	1.3	2.00	19.8	110.0
	Max.	33.85	13.88	13.79	9.17	4.8	12.00	22.8	113.0
	Avg.	30.62	10.53	10.54	8.43	3.3	4.44	21.2	111.8
I4	Min.	29.18	8.57	8.76	8.01	1.3	2.00	19.8	110.0
	Max.	33.87	13.91	14.01	9.17	5.1	9.00	22.8	113.0
	Avg.	30.71	10.63	10.61	8.43	3.3	4.08	21.2	112.0
I5	Min.	29.06	8.56	8.55	8.00	1.2	2.00	19.8	111.0
	Max.	33.24	13.94	13.98	9.17	4.9	8.00	22.8	113.0
	Avg.	30.61	10.31	10.40	8.44	3.3	4.48	21.1	111.9
I6	Min.	29.09	8.70	8.75	8.00	1.2	2.00	19.8	111.0
	Max.	33.86	13.71	13.44	9.17	4.8	12.00	22.8	113.0
	Avg.	30.82	10.40	10.40	8.42	3.3	4.27	21.2	111.9
I7	Min.	29.45	8.59	8.56	8.00	1.0	2.00	19.8	111.0
	Max.	33.59	13.61	13.48	9.15	4.9	9.00	22.8	113.0
	Avg.	30.79	10.61	10.58	8.42	3.3	4.40	21.2	111.8
I8	Min.	29.42	8.57	8.59	8.00	1.2	2.00	19.8	110.0
	Max.	33.84	14.07	13.61	9.17	4.8	10.00	22.8	114.0
	Avg.	30.71	10.61	10.61	8.42	3.3	4.66	21.2	111.9
I9	Min.	29.42	8.55	8.60	8.00	1.0	2.00	19.8	110.0
	Max.	33.71	13.82	13.29	9.13	5.1	15.00	22.8	113.0
I10	Avg.	30.56	10.97	10.94	8.23	3.1	4.63	21.6	111.9
110	Min.	29.71	10.06	10.22	8.01	1.1	2.00	20.6	111.0
NI.	Max.	31.79	11.96	11.65	8.46	4.0	10.00	22.7	113.0

Notes:

- 2.8.2 The weather conditions during the monitoring period were mainly sunny and cloudy. Sea conditions for the majority of monitoring days were either light or moderate. No major pollution source and extreme weather which might affect the results were observed during the impact monitoring.
- 2.8.3 During the impact monitoring period for February 2019, four and one of the General & Regular DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively; twenty-four and sixty-two of the Initial Intensive DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively, where findings from

^{. &}quot;Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

Keppel Seghers – Zhen Hua Joint Venture

investigations carried out immediately for each of the exceedance cases had showed that these exceedances were unrelated to the Project. Details of the exceedance are presented in **Section 8**.

2.8.4 Implemented mitigation measures minimizing the adverse impacts on water are listed in the implementation schedule given in **Appendix B**.

3. Noise Monitoring

- 3.1 Monitoring Requirements
- 3.1.1 To ensure no adverse noise impact, noise monitoring is recommended to be carried out at the nearby noise sensitive receivers (NSRs) during construction phase.
- 3.1.2 In accordance with the Updated EM&A Manual, baseline noise level at the noise monitoring stations was established as presented in the Baseline Monitoring Report. Impact noise monitoring was conducted once per week in the form of 30-minutes measurements Leq, L10 and L90 levels recorded at each monitoring station between 0700 and 1900 on normal weekdays.
- 3.1.3 In accordance with the Updated EM&A Manual, additional weekly impact monitoring should be carried out during respective restricted hours period (1900 0700) as construction works were conducted at evening and night time. However, the monitoring was yet to be arranged due to the prohibited access to the monitoring location during restricted hours. Further discussion on mutually convenient access during restricted hours is on-going with the treatment centre. During the regular noise monitoring, front-line staffs of ET have inquired the treatment centre users on any noise disturbance from the construction activities at evening and night time, where no complaint was received.
- 3.2 Noise Monitoring Parameters, Time, Frequency
- 3.2.1 Impact noise monitoring was conducted weekly in the reporting period between 0700-1900 on normal weekdays.
- 3.2.2 Construction noise level measured in terms of the A-weighted equivalent continuous sound pressure level (LAeq). Leq 30min was used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. **Table 3.1** summarizes the monitoring parameters, frequency and duration of the impact noise monitoring. The monitoring schedule is provided in **Appendix C**.

Table 3.1 Noise Monitoring Parameters, Time, Frequency and Duration

Monitoring Station	Time	Duration	Parameters
M1/ N_S1, M2/ N_S2, M3/ N_S3	Daytime: 0700-1900 hrs (during normal weekdays, not include Sunday or general holiday)	Once per week $L_{\text{eq }5\text{min}}/L_{\text{eq }30\text{min}}$ (average of 6 consecutive $L_{\text{eq }5\text{min}}$)	$L_{eq}, L_{10} \& L_{90}$

- 3.3 Noise Monitoring Locations
- 3.3.1 Three noise monitoring locations for impact monitoring at the nearby sensitive receivers are shown in **Figure 3.1**

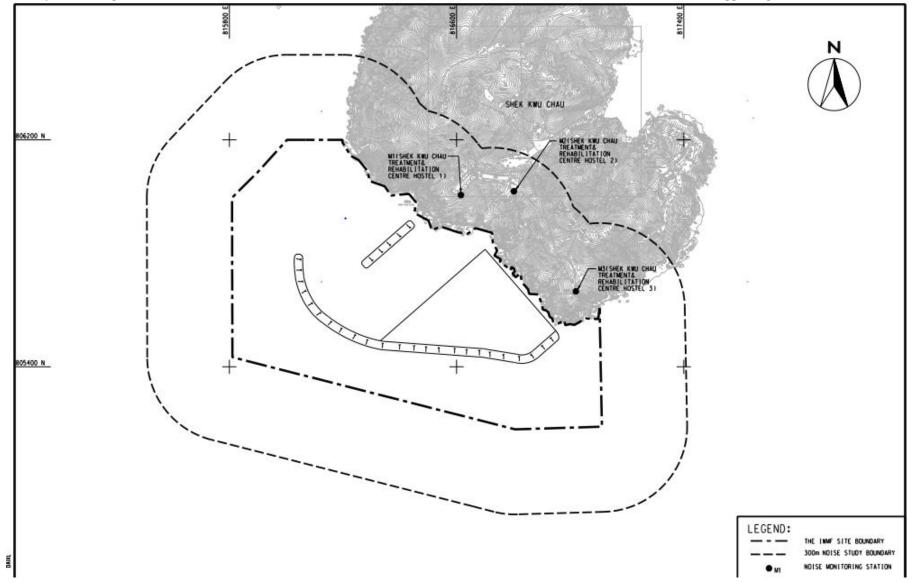


Figure 3.1 Noise monitoring locations at SKC

- 3.3.2 M1, M2 and M3 are Shek Kwu Chau Treatment and Rehabilitation Centre Hostel 1, 2 and 3 respectively of The Society for the Aid and Rehabilitation of Drug Abusers (SARDA) located at southern part of Shek Kwu Chau.
- 3.3.3 Measurement at M1, M2 and M3 were conducted at a point 1m from the exterior of the sensitive receivers building façade and at a position 1.2m above the ground. The noise monitoring stations are summarized in **Table 3.2** below.

NSR ID in **Noise Monitoring Location** Type of sensitive Measurement Station **EIA Report** receiver(s) Type Shek Kwu Chau Treatment & N_S1 M1 Residential Façade Rehabilitation Centre Hostel 1 Shek Kwu Chau Treatment & M2 N S2 Residential Facade Rehabilitation Centre Hostel 2 Shek Kwu Chau Treatment & M3 N_S3 Residential Façade Rehabilitation Centre Hostel 3

Table 3.2 Noise Monitoring Location

3.4 Impact Monitoring Methodology

- 3.4.1 At each designated monitoring location, measurements of six 5-minutes A-weighted equivalent sound pressure level [" $L_{eq \, 5min}$ "] was carried out between 0700 and 1900 for daytime measurements on a normal weekdays (exclude Sunday or general holiday). The measured six impact noise levels at each monitoring location shall then be averaged in logarithmic scale and expressed in terms of the 30 minutes A-weighted equivalent continuous sound pressure level ($L_{eq \, 30min}$) for the time period between 0700 and 1900 hours on normal weekdays.
- 3.4.2 The monitoring procedures are as follows:
 - The microphone head of the lead level meter was normally positioned 1m exterior of the noise sensitive façade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - Frequency weight: A
 - Time weighting: Fast
 - Measurement time: 5 minutes
 - Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.
 - Noise monitoring was carried out for 30 mins by sound level meter. At the end of the monitoring period, noise levels in term of L_{eq}, L₁₀,and L₉₀ were recorded. In addition, site conditions and noise sources were recorded when the equipment were checked and inspected.
 - All the monitoring data within the sound level meter system was downloaded through the computer software.

3.5 Monitoring Equipment

- 3.5.1 Integrated sound level meter was used for the noise monitoring. The meter shall be in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications.
- 3.5.2 Equipment used in the impact noise monitoring programme is summarized in **Table** 3.3 below. Calibration certificates for the noise monitoring equipment are attached in **Appendix H**.

Table 3.3 Impact Noise Monitoring Equipment

Equipment	Brand and Model
Sound Level Meter	Nti XL2
Sound Level Meter Calibrator	Pulsar 105

- 3.6 Maintenance and Calibration
- 3.6.1 The maintenance and calibration procedures were as follows:
 - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator were checked and calibrated at yearly intervals
 - Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0dB.
- 3.7 Action and Limit Levels
- 3.7.1 The Action/Limit Levels in line with the criteria of Practice Note for Professional Persons (ProPECC PN 2/93) "Noise from Construction Activities Non-statutory Controls" and Technical Memorandum on Environmental Impact Assessment Process issued by HKSAR Environmental Protection Department ["EPD"] under the Environmental Impact Assessment Ordinance, Cap 499, S.16 are presented in **Table 3.4.**

Table 3.4 Action and Limit Levels for Noise

Time Period	Action	Limit (dB(A))	
0700-1900 hrs on normal	When one documented	75 dB(A)	
weekdays	complaint is received		

- 3.7.2 If exceedances were found during noise monitoring. The actions in accordance with the Event and Action Plan shall be carried out according to **Appendix I**.
- 3.8 Monitoring Results and Observations
- 3.8.1 Impact monitoring for noise impact was carried out on 4, 11, 18, 25 February 2019. The impact noise levels at Noise Monitoring Stations at SKC (i.e. M1/ N_S1 to M3/ N_S3) are summarized in **Table 3.6**. Details of noise monitoring results are presented in **Appendix J**.

- 3.8.2 Major construction activity, major noise source and extreme weather which might affect the results were recorded during the impact monitoring.
- 3.8.3 According to our field observations, the major noise source identified at the designated noise monitoring station in the reporting month are summarised in **Table 3.5**:

Table 3.5 Summary of Field Observation

Monitoring Station	Major Noise Source
M1	Nil
M2	Nil
M3	Air-conditioning units nearby

3.8.4 No data from impact monitoring has exceeded the stipulated limit level at 75 dB(A).

Table 3.6 Summary of Impact Noise Monitoring Results

Location	Noise in dB(A)		
Location	Range of L _{eq 30min}	Range of L _{10 5min}	Range of L _{90 5min}
M1	52.6 - 56.0	53.0 – 59.3	53.1 – 49.8
M2	54.6 – 58.2	55.0 – 63.3	50.5 – 55.9
M3	51.8 – 71.9	53.4 – 82.2	48.5 – 57.6

4. WASTE

- 4.1 The waste generated from this Project includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.
- 4.2 As advised by the Contractor, 0 m³ of C&D material was generated on site in the reporting month. For C&D waste, no metals were generated and collected by registered recycling collector. No paper cardboard packing was generated on site and collected by registered recycling collector. No plastic waste was collected by registered recycling collector. No chemical waste was collected by the licensed chemical waste collector. 0 m³ of other types of wastes (e.g. general refuse) were generated on site and disposed of at Landfill. 46,782.1 m³ of sand was imported during the reporting period.
- 4.3 Chemical waste generated from the cleaning of oil stain and leakage on deck of barges was now stored in the chemical waste storage area on the barges.
- 4.4 With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 4.1**. Details of cumulative waste management data are presented as a waste flow table in **Appendix K**.

Table 4.1 Quantities of Waste Generated from the Project

	Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly								
	Total	Hard Rock and Large	Daysadin	Daysadin	Diamogad	Imp	oorted Fil	1		Domon /	Dlastics			Others,
Reporting Month	Total Quantity Generated	Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Sand	Public Fill	Rock	Metals	cardboard packaging	(Chemical Waste		e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(ir	,000m ³)		(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000m ³)
February 2019	0	0	0	0	0	46.7821	0	0	0	0	0	0	0	0

Notes:

- 1. Broken concrete for recycling into aggregates.
- 2. Plastic refer to plastic bottles / containers, plastic sheets / foam from packaging materials.
- 3. Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.
- 4.5 Although there is not much waste generation anticipated in the coming month from the Project, the Contractor is advised to sort and store any solid and liquid waste on-site properly prior to disposal.

5. CORAL

5.1 Coral Monitoring Requirements

5.1.1 To monitor the health condition of corals during different phases, corals located within areas likely to be affected by the Project, corals located at control sites (areas unlikely to be affected by the Project), the trans-located coral colonies as well as the tagged natural coral colonies at the recipient site were chosen, in order to identify any adverse indirect impact from the marine works. The size, percentage cover and health condition of corals (i.e. any sign of abnormal appearance, such as layer of mucus, bleaching, partial mortality etc.) at representative transects should be recorded during each monitoring.

5.2 Coral Monitoring Parameters, Time, Frequency

- 5.2.1 Rapid Ecological Assessment (REA) survey was conducted on 26 June 2018 at the suggested control site and indirect impact site within two week before commencement of the construction work which was 29 June 2018. 10 selected hard coral colonies with the similar species were tagged at both control and indirect impact site. Following coral translocation in the recipient site R3, 16 coral colonies attached to rocks less than 50 cm in diameter were translocated and tagged, as well as 10 selected natural coral colonies, at the recipient site. One additional REA survey was conducted in December 2018 to further assess the seabed condition at Indirect Impact Site after Typhoon Mangkhut.
- 5.2.2 Tagged coral colonies at the suggested control site and indirect impact site are being monitored weekly for the first month and followed by monthly monitoring for two months. Quarterly monitoring will be carried out after the first three-months monthly monitoring for until the end of the construction phase. The selected Control Site is located at Yuen Kong Chau of Soko Islands about 7 km away from the project area. Tagged coral colonies at the proposed recipient site are being monitored quarterly for one year. The selected recipient site R3 is located the opposite side of the Project area at about 2 km away. The detailed survey of the Control Site and Impact Site were conducted before the commencement of the Construction Phase.
- 5.2.3 Monitoring recorded the following parameters (using the same methodology adopted during the pre-translocation survey); the size, presence, health conditions (percentage of mortality/bleaching) and percentage of sediment of each tagged coral colony. The general environmental conditions including weather, sea, and tidal conditions of impact site, control site and recipient site were monitored.
- 5.2.4 **Table 5.1** summarizes the monitoring locations, time and frequency of the tagged coral colonies monitoring. The monitoring schedule is provided in **Appendix C**.

Table 5.1 Tagged Coral Monitoring Locations, Time and Frequency

Monitoring Location	Monitoring	Frequency	No. of Monitoring
Womtoring Location	Month/Year		Survey
	1st Month	Weekly Survey	4
	2 nd to 3 th Months	Monthly Survey	2
10 selected hard coral	4 th Month (postponed	Re-tagging of Cora	al Colonies in Indirect
colonies at control site /	to 5 th month due to	Impact Site after Ty	phoon Mangkhut
indirect impact site	diver accident in Shek		
	Kwu Chau in October		
	2018)		

Monitoring Location	Monitoring	Frequency	No. of Monitoring
Momitoring Location	Month/Year		Survey
	4 th Month (postponed	Re-tagging of Cora	al Colonies in Control
	to 5th month due to	Site after Typhoon I	Mangkhut
	diver accident in Shek		
	Kwu Chau in October		
	2018 and further		
	postpone to 6 th month		
	due to adverse		
	weather)		
	5 th Month (postponed		1
	to 6 th month due to	Monthly Survey	
	diver accident in Shek		
	Kwu Chau and further		
	postponed to 7 th		
	month due to delay of		
	re-tagging activities at		
	both Indirect Impact		
	Site and Control Site)		
	7 th to 76 th Months	Quarterly Survey	23
	(postponed to 8 th to		
	76 th month due to		
	diver accident in Shek		
	Kwu Chau in October		
	2018)		
16 translocated hard coral colonies and 10			
selected natural hard	1st Year	Quarterly Survey	4
coral colonies at	1 1001	Quantoning Survey	
recipient site R3			

5.3 Coral Monitoring Locations

5.3.1 Location of the ten tagged coral colonies at each of the proposed indirect impact site (re-tagging after typhoon Mangkhut) ,control site (baseline) and recipient site R3 (translocation) are shown in **Figure 5.1**, **Figure 5.2** and **Figure 5.3** respectively:

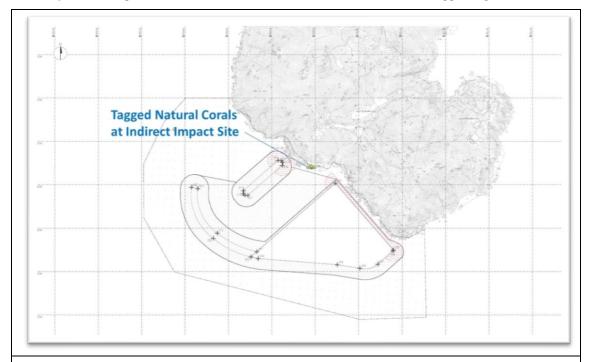


Figure 5.1 Tagged Natural Corals at Indirect Impact Site Near SKC for re-tagging after typhoon Mangkhut

Figure 5.2 Tagged Natural Corals at Control Site Near Yuen Kong Chau for re-tagging after typhoon Mangkhut

Figure 5.3 Tagged Translocation Corals at Recipient Site R3 near SKC

5.3.2 The GPS coordinates of the tagged coral colonies, retagged coral colonies and recipient site were shown in **Table 5.2**, **Table 5.3** and **Table 5.4** respectively.

Table 5.2 Tagged Natural Corals during Baseline and Re-tagged Natural Corals after Typhoon Manghkut at Control Site near Yuen Long Chau

Coral #	GPS Coo	ordinates
1	N22°09'45.96"	E113°54'57.81"
2R	N22°11'29.12"	E113°59'09.01"
3	N22°09'45.81"	E113°54'57.78"
4	N22°09'45.70"	E113°54'57.95"
5R	N22°11'29.10"	E113°59'09.18"
6	N22°09'45.75"	E113°54'58.02"
7R	N22°11'29.17"	E113°59'08.86"
7	N22°09'45.65"	E113°54'57.94"
8	N22°09'45.53"	E113°54'57.90"
9	N22°09'46.23"	E113°54'54.70"
10R	N22°11'29.18"	E113°59'08.91"

Notes:

i. The re-tagged corals were marked as #R.

Table 5.3 Re-tagged Natural Corals after Typhoon Manghkut at Indirect Impact Site near SKC

Coral # note i	GPS	Coordinates
11R	N22°11'29.14"	E113°59'08.92"
12R	N22°11'29.12"	E113°59'09.01"
13R	N22°11'29.11"	E113°59'09.07"
14R	N22°11'29.13"	E113°59'09.12"
15R	N22°11'29.10"	E113°59'09.18"
16R	N22°11'29.07"	E113°59'09.23"

Coral # note i	GPS	Coordinates
17R	N22°11'29.17"	E113°59'08.86"
18R	N22°11'29.14"	E113°59'08.94"
19R	N22°11'29.20"	E113°59'08.81"
20R	N22°11'29.18"	E113°59'08.91"

Notes:

i. The re-tagged corals were marked as #R.

Table 5.4 GPS Coordinates of Recipient Site R3

Site	GPS Coordinates		
R3	N22°11'43.69"	E113°28.99"	

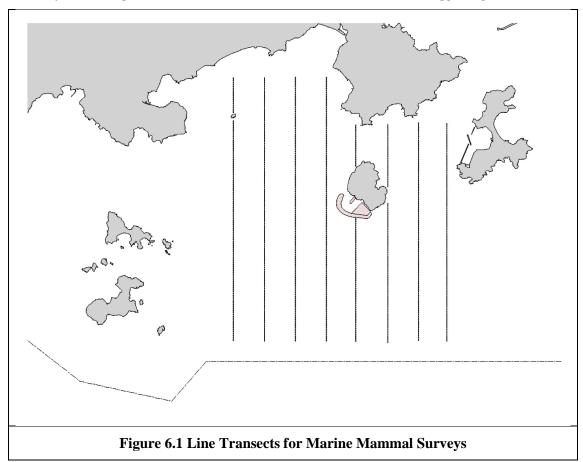
- 5.4 Impact Monitoring Methodology
- 5.4.1 Health status of coral was assessed by the following criteria:
- Hard coral: Percentage of surface area exhibiting partial mortality and blanched/bleached area of each coral colony and degree of sedimentation.
- 5.5 Action and Limit Levels
- 5.5.1 Monitoring result was reviewed and compared against the below Action Level and Limit Level (AL/LL) as set with the below **Table 5.5** and **Table 5.6**.

Table 5.5 Action and Limit Levels for Construction Phase Coral Monitoring

Parameter	Action Level	Limit Level	
Mortality	a 15% increase in the percentage of partial mortality on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not	on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not recorded on the tagged corals at the	

Table 5.6 Action and Limit Levels for Post-Translocation Coral Monitoring

Parameter	Action Level	Limit Level
Mortality	Monitoring a 15% increase in the percentage of partial mortality on the corals occurs at more than 20% of the translocated coral colonies	at more than 20% of the translocated coral colonies that is not recorded on the original corals in the recipient site,


- 5.5.2 If exceedance was found during coral monitoring. The actions in accordance with the Event and Action Plan should be carried out according to **Appendix L.**
- 5.6 Monitoring Results and Observations
- 5.6.1 The additional monthly monitoring after coral re-tagging on Control site and Indirect Impact site due to the hitting of super typhoon Mangkhut in mid-September 2018 was performed on 10 January 2019 and reported in 7th Monthly EM&A report. No coral monitoring survey had been done during the reporting period. The 1st quarterly coral monitoring at both Indirect Impact Site and Control Site during construction phase would be scheduled in March 2019 according to **Appendix P** and the 4th post-translocation monitoring would be scheduled in March 2019 according to **Appendix P**.

6. MARINE MAMMAL

- 6.1 Monitoring Requirements
- 6.1.1 The marine mammal monitoring programme would focus on Finless Porpoise, as the study area near Shek Kwu Chau has been identified as a hotspot for this species, while the Chinese White Dolphins rarely occurred there in the past.
- 6.1.2 The monitoring would verify the predicted impacts on marine mammals, and examine whether the mitigation measures recommended in the EIA report have been effectively implemented to protect marine mammals from negative impacts from construction activities.
- 6.1.3 The Vessel-based Line-transect Survey, the Passive Acoustic Monitoring and the Land-based Theodolite Tracking will be conducted to provide systematic, quantitative measurements of occurrence, encounter rate, habitat use, movement and behavioural patterns of marine mammals within or near the Project Area during construction and operational phases.
- 6.1.4 The mammal monitoring works during construction consist of the following three survey methods:
- Vessel-based Line-transect Survey to monitor the occurrence of Finless Porpoises (and Chinese White Dolphins) in the study area during construction works, by comparing with the findings of the pre-construction marine mammal monitoring;
- Passive Acoustic Monitoring to study the usage of the Project Area and two control sites in South Lantau Waters by Finless Porpoise during construction works, in reference with the baseline findings of the pre-construction marine mammal monitoring; and
- Land-based Theodolite Tracking to study the movement and behavioral pattern of Finless Porpoise within and around the Project Area during construction works.
- 6.1.5 The marine mammal observation works of Marine Mammal Exclusion Zone (MMEZ) and Marine Mammal Watching as two of the specific mitigation measures recommended in the approved EIA report shall be fully and properly implemented for the Project to minimize disturbance on Finless Porpoise during construction and operational phases.
- 6.2 Survey Methods
- 6.2.1 Vessel-based Line-transect Survey

For the vessel-based marine mammal surveys, the monitoring team adopted the standard line-transect method (Buckland et al. 2001) as same as that adopted during the EIA study and pre-construction phase monitoring to allow fair comparison of marine mammal monitoring results.

Eight transect lines are set at Southeast Lantau survey area, including Shek Kwu Chau, waters between Shek Kwu Chau and the Soko Islands, inshore waters of Lantau Island (e.g. Pui O Wan) as well as southwest corner of Cheung Chau as shown in **Figure 6.1** below:

The surveys should cover all 4 seasons in order to take natural fluctuation and seasonal variations into account for data analysis of distribution, encounter rate, density and habitat use of both porpoises and dolphins (if any). In comparison to the baseline monitoring results, results from the analysed construction phase monitoring data would allow the detection of any changes of their usage of habitat, in response to the scheduled construction works. The monitoring surveys shall be conducted throughout the construction phase involving marine construction work with the frequency shown in **Table 6.1** below:

Table 6.1 Vessel-based Line-transect Survey Frequency

Season	Months	Frequency
Peak Season	December, January, February,	Twice per month
	March, April & May	
Non-peak Season	June, July, August, September,	Once per month
	October & November	

For each vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) would be used to make observations from the flying bridge area. Two experienced marine mammal observers (a data recorder and a primary observer) would make up the on-effort survey team, and the survey vessel would transit different transect lines at a constant speed of 13-15 km per hour. The data recorder shall search with unaided eyes and fill out the datasheets, while the primary observer shall search for dolphins and porpoises continuously through 7 x 50 marine binoculars. Both observers shall search the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0o). Two additional experienced observers shall be available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers shall be

experienced in small cetacean survey techniques and identifying local cetacean species with extensive training by marine mammal specialist of the ET

During on-effort survey periods, the survey team shall record effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance travelled in each series (a continuous period of search effort) with the assistance of a handheld GPS (Garmin eTrex Legend). Data including time, position and vessel speed would also be automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.

When porpoises or dolphins are sighted, the survey team shall end the survey effort, and immediately record the initial sighting distance and angle of the porpoise or dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel shall be diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, behavioural observations, and collection of identification photos (feasible only for Chinese White Dolphin). The perpendicular distance (PSD) of the porpoise or dolphin group to the transect line would then be calculated from the initial sighting distance and angle, which shall be used in the line-transect analysis for density and abundance estimation.

The line-transect survey data shall be integrated with a Geographic Information System (GIS) to visualize and interpret different spatial and temporal patterns of porpoise and dolphin distribution using their sighting positions collected from vessel surveys. Location data of porpoise and dolphin groups would be plotted on map layers of Hong Kong using a desktop GIS (e.g. ArcView© 3.1) to examine their distribution patterns in details. The encounter rate could be used as an indicator to determine areas or time periods of importance to porpoises within the study area. For encounter rate analysis of finless porpoises, only survey data collected under Beaufort 2 or below condition would be used for encounter rate analysis.

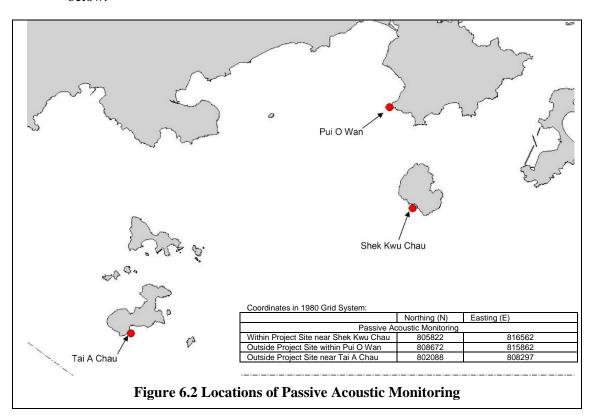
To take into account of the variations of survey effort across different sections within survey area, the quantitative grid analysis of habitat use would be conducted to examine finless porpoise usage among 1-km² grids within the Southeast Lantau survey area. For the grid analysis, SPSE (sighting density) and DPSE (porpoise density) values would be deduced for evaluation on level of porpoise usage. First, positions of on-effort porpoise sightings from the study period are plotted onto 68 grids (1 km x 1 km each) within the survey area. Sighting density grids and porpoise density grids shall then be normalized with the amount of survey effort conducted within each grid. The total amount of survey effort spent on each grid shall be calculated by examining the survey coverage on each line-transect survey to determine how many times the grid had been surveyed during study period. With the amount of survey effort calculated for each grid, the sighting density and porpoise density of each grid shall be further normalized (i.e. divided by the unit of survey effort).

The newly-derived unit for sighting density was termed SPSE, representing the number of on-effort sightings per 100 units of survey effort. In addition, the derived unit for actual porpoise density was termed DPSE, representing the number of dolphins/porpoise per 100 units of survey effort. Among the 1-km² grids that were partially covered by land, the percentage of sea area was calculated using GIS tools, and their SPSE and DPSE values were adjusted accordingly. The following formulae shall be used to estimate SPSE and DPSE in each 1-km² grid within the study area:

 $SPSE = ((S / E) \times 100) / SA\%$

$$DPSE = ((D / E) \times 100) / SA\%$$

where S = total number of on-effort sightings


D = total number of dolphins/porpoises from on-effort sightings

E = total number of units of survey effort

SA% = percentage of sea area

6.2.2 Passive Acoustic Monitoring (PAM)

The PAM aims to study the usage of an area by Finless Porpoise by using an array of automated static porpoise detectors (e.g. C-POD) which would be deployed at different locations to detect the unique ultra-high frequency sounds produced by Finless Porpoise. During the construction period, the PAM survey will be conducted including placement of two passive porpoise detectors outside the Project Area as control site (i.e. within Pui O Wan and to the south of Tai A Chau) and one porpoise detector within the Project Area (i.e. near Shek Kwu Chau) as shown in **Figure 6.2** below.

6.2.3 These three detectors will be deployed on-site to carry out 24-hours monitoring for a period listed as **Table 6.2** below during the construction phase.

Table 6.2 PAM Deployment Period

Season	Months	Deployment Period
Peak Season	December, January, February,	At least 30 days during the peak
	March, April or May	months of porpoise occurrence
		in South Lantau waters

The automated static porpoise detectors shall detect the presence and number of finless porpoise and Chinese White Dolphins respectively over the deployment period, with the false signal such as boat sonar and sediment transport noise distinguished and filtered out. The detectors shall be deployed and retrieved by professional dive

team on the seabed of the three selected location shown in **Figure 6.2**. During each deployment, the C-POD unit serial numbers as well as the time and date of deployments shall be recorded. Information including the GPS positions and water depth at each of the deployment locations shall also be obtained.

The diel patterns (i.e. 24-hour activity pattern) of finless porpoise occurrence among the three sites at Shek Kwu Chau, Tai A Chau and Pui O Wan shall be analyzed. Peaks and troughs of finless porpoise occurrence per hour of day would be identified and compared with the results obtained from pre-construction monitoring.

6.2.4 Land-based Theodolite Tracking

The Land-based Theodolite Tracking study would use the same station as in the AFCD monitoring study(same as the baseline monitoring location), which is situated at the southwest side of Shek Kwu Chau (GPS position: 22°11.47' N and 113°59.33' E) as shown in below **Figure 6.3**. The station was selected based on its height above sea level (at least 20 metres), close proximity to shore, and relatively unobstructed views of the entire Project Area to the southwest of Shek Kwu Chau. The height of the Shek Kwu Chau Station established by the HKCRP team is 74.6 m high at mean low water, and only a few hundred metres to the IWMF reclamation site, which is ideal for the purpose for the present behavioural and movement monitoring of finless porpoises as well during construction phase considering there as an un-obstructed vantage point at a height above the Project Site.

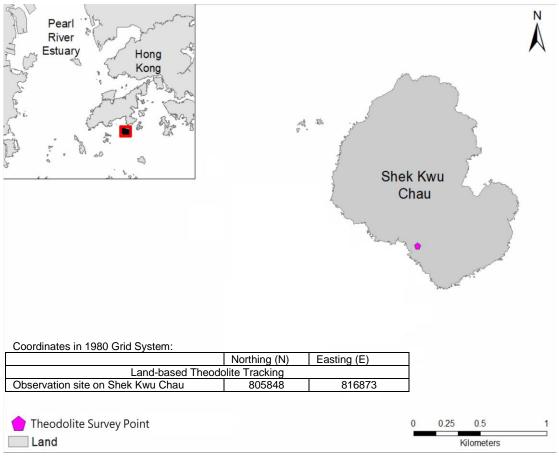


Figure 6.3 Locations of Land-based Theodolite Tracking

During the construction phase, Land-based Theodolite Tracking will be carried out for approximately six hours of tracking for each day of field work for a period listed as **Table 6.3** below, preferably at the initial stage of the construction period (i.e. December 2018 to May 2019).

Table 6.3 Land-based Theodolite Tracking Survey Period

Season	Months	Survey Period
Peak Season	December, January, February,	30 days during the peak months
	March, April or May	of porpoise occurrence in South
		Lantau waters

The monitoring period for land-based theodolite tracking will be proposed to be overlapped with the PAM. The monitoring team consists of one experienced theodolite operator and at least two field observers for assistance. To conduct theodolite tracking, our observers will search systematically for Finless Porpoise using the unaided eye and 7 x 50 handheld binoculars on each survey day throughout the study area. When an individual or group of porpoises is located, a theodolite tracking session will be initiated and focal follow methods will be used to track the porpoise(s). Behavioural state data (i.e. resting, milling, travelling, feeding and socializing) shall also be recorded every 5 minutes for the focal individual or group. Positions of porpoises and boats shall be measured using a digital theodolite connected to a laptop computer. This tracking survey will be conducted during the peak season between December 2018 and May 2019 for 30 surveys spanning across 15-16 weeks during the peak season to provide good temporal coverage during the initial stage of the construction period.

6.3 Specific Mitigation Measures

6.3.1 Monitored exclusion zones

During the installation/re-installation/relocation process of floating type silt curtains, in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains, a monitored exclusion zone of 250 m radius from silt curtain should be implemented. The exclusion zone should be closely monitored by an experienced marine mammal observer (MMO) for at least 30 minutes before the start of installation/re-installation/relocation process. If a marine mammal is noted within the exclusion zone, all marine works should stop immediately and remain idle for 30 minutes, or until the exclusion zone is free from marine mammals. The experienced marine mammal observer should be well trained to detect marine mammals. Binoculars should be used to search the exclusion zone from an elevated platform with unobstructed visibility. The marine mammal observer(s) shall be independent of the construction contractor and shall form part of the Environmental Team and have the power to call-off construction activities.

According to the Condition 2.25 of the FEP, MMEZ should be implemented during the installation/re-installation/relocation process of floating type silt curtains in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains. Also, marine construction works expected to produce underwater acoustic disturbance as per Condition 2.27 of the FEP, especially within December and May, would require the implementation of MMEZ, which currently all those specific construction activities have been replaced by less acoustically disturbing construction methods such as Deep Cement Mixing (DCM) and Precast Concrete Blocks Installation as discussed in Section 5.3 of the Detailed Monitoring Programme on Finless Porpoise, however, MMEZ would also be implemented for precautionary purpose for DCM works.

A MMEZ with 250 m distance from the boundary of a work area shall be established during the above situation. A typical MMEZ is indicated in **Figure 6.4** for reference. The MMEZ serves as a monitoring approach to provide appropriate and immediate actions once finless porpoise or Chinese White Dolphin is sighted within the MMEZ. All MMEZ will be monitored by competent Marine Mammal Observers (MMOs) to be provided by the Environmental Team (ET) for the IWMF and trained by the Marine Mammal Monitoring Specialist of the ET who is independent from JV.

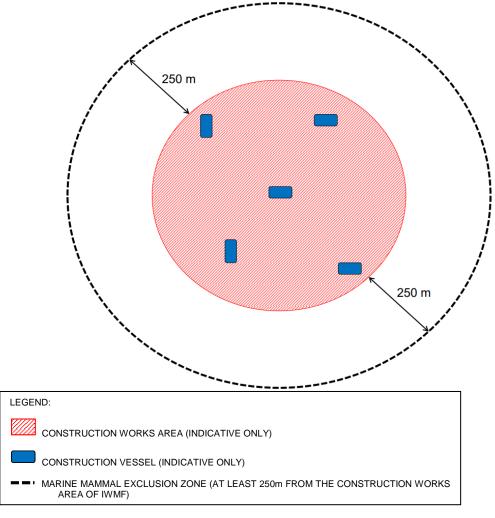


Figure 6.4 Illustration of Typical MMEZ

Prior to the commencement of construction activity, our MMOs shall ensure the boundary of a marine work area and setting up of the MMEZ for the work area and get access to the monitoring location on a barge or a lookout point where there is no obstructed views for monitoring the MMEZ during the construction activity. The MMEZ shall be scanned thoroughly by a MMO for any presence of marine mammal e.g. finless porpoise for an initial period of 30 minutes. Construction activity shall only be commenced after the MMO has confirmed that the MMEZ is clear of the marine mammal for the initial period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the commencement of construction activity. The MMEZ monitoring shall be carried on throughout the period for all active construction activities requiring implementation of MMEZ.

When any mammal marine, e.g. Finless Porpoise, is detected by the MMO within the MMEZ during construction, the MMO shall inform the construction superintendent immediately through mobile phone or handheld transceivers to cease construction activity within the MMEZ. Construction activity shall not be re-commenced until the MMO confirms that the MMEZ is continuously clear of marine mammal for a period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the re-commencement of construction activity.

As there could be a number of Contractors working at the same time within a work area for the IWMF project, a full contact list of MMEZ monitoring team members of the ET and the relevant responsible construction superintendents of the Contractor at the site shall be prepared, updated regularly and circulated to all parties involved in the MMEZ monitoring. With a full contact list, our MMOs shall be able to find out the contacts of corresponding persons in case of marine mammal sighting within and near the MMEZ or emergent occurrence of any unpredictable impact on marine mammal.

If a marine mammal is still observed in close vicinity but outside the MMEZ, the MMO shall inform the construction superintendent about the presence of marine mammal. The MMO shall remain in position and closely observe the movement of the marine mammal as well as searching for the appearance of any other marine mammal within the MMEZ. No matter the marine mammal is observed within or in close vicinity but outside the MMEZ, the construction superintendent or relevant persons shall inform all vessel captains involved in construction activities around the MMEZ to pay special attention of the presence of the marine mammal in order to reduce chance of collision with them. In case of injury or live-stranded marine mammal being found within the MMEZ, the marine mammal observer shall immediately inform the construction superintendent to suspend construction activities within the works area and contact AFCD through "1823" marine mammal stranding hotline.

6.3.2 Marine mammal watching plan

Upon the completion of silt curtain installation/re-installation/relocation, all marine works would be conducted within a fully enclosed environment within the silt curtain. Hence exclusion zone monitoring would no longer be required. Subsequently, a marine mammal watching plan would be implemented.

Before commencement of dredging/sand blanket laying work at each designated area, a trained MMO shall check whether position frame silt curtains are ready, well prepared and operated without any obvious damage. Also, the MMO shall confirm the presence of the relevant frontline staff of the main contractor or its sub-contractors and engineers on board to ensure the effective communication, coordination and implementation of the response plan in relation to any incidents involving marine mammals within the waters surrounded by the position frame type silt curtains and the work areas. Also, there are lookout points at an elevated level on each barge, clear and safe access at the edges of the derrick lighter/ flag-top barge for inspection during dredging/sand blanket laying works, provision of sufficient lighting is required if working at night.

During the operation, the inspection will be conducted daily. The MMO will walk along the edge of derrick lighter (DL) and flag-top barge (FB) along the position frame silt curtain or proper location without obstacles where appropriate to inspect the position frame silt curtain with naked eyes, the MMO will check that the position

frame silt curtains are maintained in the correct positions with no obvious defects / entanglement and there is no observable muddy water passing through the position frame silt curtain system. Any floating refuse trapped by the silt curtain shall be removed as part of the regular inspection. For night inspection, spotlight will be used to provide sufficient brightness to assist the inspection in dark condition.

For the localized silt curtain re-deployment, MMO will conduct visual inspection to confirm that there is no presence of marine mammal within the localized silt curtain. Visual inspection will be conducted every an hour by MMO till confirming that there is not any marine mammal observed in the surrounding area of the frame type silt curtain. The duration will be subject to various conditions, e.g. weather or angle of observation. The works can only commence after confirming that the surrounding waters of the localized silt curtains has not contain any marine mammal. Thereafter, frontline staff, i.e. foremen, site agent, superintendents and engineers will assist our MMO in implementing the plan from the active work fronts within the waters surrounded by the silt curtains throughout the work period. The MMO will conduct regular check every 60 minutes to observe the presence of any marine mammal around the localized silt curtain or being trapped by the localized silt curtain. The MMOs will also check if the localized silt curtains are in correct positions..

The MMO shall fill up our Marine Mammal Sighting Record Sheet. After inspection, those records should be kept properly and submitted to the project team. In case there is any marine mammal being found, the MMO should carry out the response actions and communicate with relevant parties to stop and then resume work after the discovered marine mammal leaves. After lifting up and mobilization of silt curtain, the MMO will repeat the procedures of regular and visual inspection until the end of the construction works.

Each lookout point will have an unobstructed view to waters around the DL and FB. The MMO will move around the DL and FB to establish a clear and unobstructed view as much as they can without compromising the safety concern. When appropriate, the lookout point can be replaced by a proper location if unobstructed view can be assured.

6.4 Results and Observations

6.4.1 Vessel-based Line-transect Survey

The monthly survey was conducted on 12 and 26 February 2019. As this is the designated peak season (December - May), two surveys were completed. A total on effort (transects only) survey length of 82.7 km was completed, 58.2 km at Beaufort Sea State 2 or better (**Table 6.4**). Five finless porpoise sightings were recorded, three (3) "on effort" and two (2) while transiting between transect lines (referred to as secondary line in AFCD reports (**Table 6.5**, **Figure 6.5**).

Table 6.4 Summary of Vessel-based Line-transect Survey Effort

Date	Area*	Beaufort	Effort (km)	Season	Vessel	Effort Type**
12-02-19	SEL	1	18.3	WINTER	SMRUHK	P
12-02-19	SEL	2	14.8	WINTER	SMRUHK	P
12-02-19	SEL	3	8.1	WINTER	SMRUHK	P
26-02-19	SEL	1	6.6	WINTER	SMRUHK	P
26-02-19	SEL	2	18.5	WINTER	SMRUHK	P
26-02-19	SEL	3	16.4	WINTER	SMRUHK	P

- * As shown in Figure. 6.1
- ** P (from AFCD) denotes the ON EFFORT survey on the transect line, not the adjoining passages

Table 6.5 Sightings recorded during February 2019 Vessel-based Line-transect Survey

Date	Species	Sighting No.	Time	Group Size	PSD	Behaviour	Lat.	Long.	Area	Effort	Season
12-02-19	Finless Porpoise	13	10:46	3	22	Travel	22.1882	113.9535	SEL	ON	WINTER
12-02-19	Finless Porpoise	14	12:11	2	N/A	Travel	22.2002	113.9782	SEL	OFF	WINTER
12-02-19	Finless Porpoise	15	10:59	3	20	Unknown	22.2173	113.9543	SEL	ON	WINTER
26-02-19	Finless Porpoise	16	12:10	4	N/A	Travel	22.2021	113.9831	SEL	OFF	WINTER
26-02-19	Finless Porpoise	17	12:23	2	N/A	Travel	22.1910	113.9758	SEL	OFF	WINTER

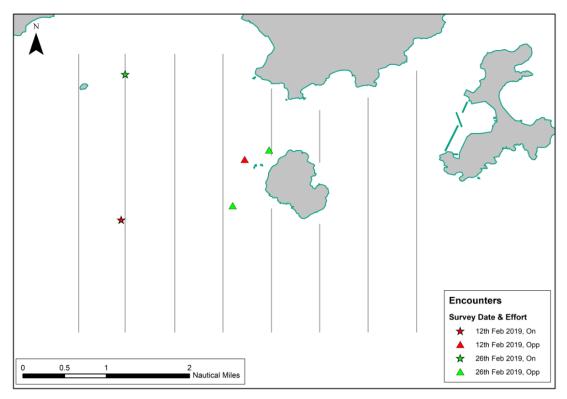


Figure 6.5 Location of sightings recorded during February 2019 Vessel-based Line-transect Survey

A review of the long term AFCD marine mammal monitoring programme, the EIA and the pre-construction baseline monitoring report for this project was conducted. Both the EIA and the pre-construction baseline monitoring were conducted during the peak porpoise months (Dec 2008 to May 2009 and Feb-April 2018, respectively). The AFCD long term monitoring data, the EIA and baseline information could be compared directly to the February 2019 Impact Survey results.

A review of the Beaufort Sea state February survey conditions between 2009 and 2017 (only data available from AFCD at time of writing; (AFCD 2018¹; 2017²; 2016³; 2015⁴; 2014⁵; 2013⁶; 2012⁷; 2011⁸; 2010⁹)) show that between 49.7% and 100% of survey effort has been conducted at Beaufort Sea State 2 or better in the past. During the EIA, 14.6% of the survey effort was conducted at Beaufort 2 or better. For this project in February 2019, 77.9% of the survey was conducted at Beaufort Sea State 2 or better and, as such, survey conditions in February 2019 were within the % limits of previous AFCD surveys, and much better than surveys conducted during the EIA.

A review of the porpoise sightings in the survey area for February between 2009-2018 indicate that there are fluctuations between the number of sightings usually recorded. For all weather conditions, and for the nine years data available, 1 year recorded zero (0) sightings (AFCD 2018), 3 years recorded five (5) sightings (EIA 2009, 2013, 2014), 2 years recorded seven (7) sightings (2016, 2017), 1 year recorded nineteen (19) sightings (2010) and 1 year recorded twenty (20) sightings (Baseline 2018). No survey effort in SEL was conducted in some years (2009, 2011, 2012, 2015). Effort varied considerably between years and the average number of sightings (per km) varied between 0.00 and 0.19 km⁻¹. There is no trend in encounter rates recorded by the AFCD long term monitoring programme, i.e., the highest encounter rate was recorded twice; in 2010 (19 sightings) and in 2013 (5 sightings). The lowest encounter rate was recorded in 2018 (AFCD surveys). For the baseline survey, the encounter rate for February 2018 was 0.15 sightings km⁻¹. For February 2019, an encounter rate of 0.06 sightings km⁻¹ is calculated, which is low when compared to other years and other survey types. It is noted that if you compare February 2019 to the two survey types in February 2018, i.e., the AFCD and the baseline survey, the encounter rate for February 2019 lies at the approximate mid-point of the 2018 February encounter rates. This, again, highlights the inherent variability for surveys that focus on relatively small populations of highly mobile individuals. It is highlighted that the survey area conducted for this monitoring is very small.

It is difficult to draw conclusions with regards to impacts on marine mammals as predicted in the EIA and the effectiveness of project mitigation measures during the initial phase of construction activities when porpoise sightings are relatively low. It is noted that the encounter rate for February 2019 is relatively low when compared to other surveys conducted in previous Februarys. As surveys continue for this project, data shall be constantly re-evaluated across survey months to discern trends and impacts, if any. It is noted that with such an extremely low encounter rate in such a small part of the finless porpoise habitat, significant differences in sightings may be impossible to calculate.

6.4.2 PAM and Land-based Theodolite Tracking

These tracking surveys will be conducted during the peak season between December 2018 and May 2019 for 30 surveys during the peak season to provide good temporal coverage during the initial stage of the construction period.

Theodolite surveys were conducted on 21, 22 and 28 February 2019. Five to six hours of monitoring were conducted each day. As anticipated, site barges obstructed much of the immediate view. Theodolite data shall be analysed at the end of the survey period, as per the format and analyses procedures presented in the baseline report for this project.

6.4.3 Specific Mitigation Measures

Silt curtains were deployed for sand blanket laying works and DCM trial during the reporting period. Teams of two MMO were on duty for continuous monitoring of the Marine Mammal Exclusion Zone (MMEZ) for DCM works, cluster MMEZ installation/re-installation/relocation process of silt curtains, and the marine mammal trapping checking and silt curtains inspection in accordance with the Detailed Monitoring Programme of Finless Porpoise and Marine Mammal Watching Plan respectively. Trainings for the MMO were provided by the ET prior to the aforementioned works, with a cumulative total of 98 individuals being trained and the training records kept by the ET. From the Marine Mammal Watching observation records and MMEZ monitoring log records, no Finless Porpoise or other marine mammals were observed within or around the MMEZ and silt curtains in the reporting month.

6.4.4 References

- 1. Agriculture, Fisheries and Conservation Department (AFCD) 2018. Annual Marine Mammal Monitoring Programme April 2017-March 2018) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/
- 2. Agriculture, Fisheries and Conservation Department (AFCD) 2017. *Annual Marine Mammal Monitoring Programme April 2016-March 2017*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 3. Agriculture, Fisheries and Conservation Department (AFCD) 2016. *Annual Marine Mammal Monitoring Programme April 2015-March 2016*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR.

 <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_c
- 4. Agriculture, Fisheries and Conservation Department (AFCD) 2015. Annual Marine Mammal Monitoring Programme April 2014-March 2015) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/
- 5. Agriculture, Fisheries and Conservation Department (AFCD) 2014. *Annual Marine Mammal Monitoring Programme April 2013-March 2014*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 6. Agriculture, Fisheries and Conservation Department (AFCD) 2013. *Annual Marine Mammal Monitoring Programme April 2012-March 2013*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar_chi/con_ma

- 7. Agriculture, Fisheries and Conservation Department (AFCD) 2012. *Annual Marine Mammal Monitoring Programme April 2011-March 2012*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 8. Agriculture, Fisheries and Conservation Department (AFCD) 2011. *Annual Marine Mammal Monitoring Programme April 2010-March 2011*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch
- 9. Agriculture, Fisheries and Conservation Department (AFCD) 2010. *Annual Marine Mammal Monitoring Programme April 2009-March 2010*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <a href="http://www.afcd.gov.hk/english/conservation/con_mar/con_mar_chi/con_mar_ch

7. WHITE-BELLIED SEA EAGLE

7.1 Monitoring Requirement

- 7.1.1 On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access. 3 phases monitoring programme will be comprise including: pre-construction phase, construction phase and operation phase.
- 7.1.2 The Pre-Construction WBSE monitoring was started on 30 January 2018 and the location of WBSE nest was confirmed on 21 February 2018 and it is located at the western part of SKC Island (Figure 1). Two adults and two chicks were also recorded on 5th March 2018 survey till the end of the Pre-construction monitoring on 15th May 2018. Construction Phase monitoring were carried out followed by the commencement of the Construction Phase on 28th June 2018.
- 7.2 WBSE Monitoring Parameters, Time, Frequency
- 7.2.1 The objective of the construction phase monitoring should be to verify the utilisation of the area by WBSE, their responses to construction disturbance, as well as the effectiveness of the proposed mitigation measures. Throughout the construction phase, field surveys should be conducted twice per month during their core breeding season (from December to May), and once per month outside their core breeding season (from June to November). The monitoring frequency should be increased to weekly during the incubation period of each year. In order to confirm their foraging ground near the construction site, it is necessary to conduct daily monitoring during the first week of nestling period in each year. The monitoring schedule during the reporting period is provided in **Appendix C**.

7.3 Monitoring Location

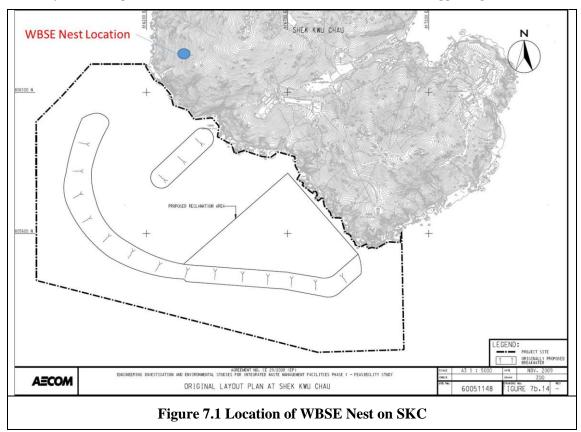
7.3.1 Since there is no suitable land-based along the coast of SKC, only boat surveys were conducted. On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access.

7.4 Monitoring Methodology

- 7.4.1 Information to be collected included feeding, perching/roosting, preening, soaring, flying, nesting and territorial guarding and the time spent on each activity. The responses and reactions to any disturbance to the WBSEs were also recorded and examined in conjunction with the construction noise and/or other events in the vicinity. Other disturbances such as weather condition, or invasion by other fauna species were also recorded.
- 7.4.2 Binocular, scope, camera, lens and GPS device used are summarized as **Table 7.1** below:

Table 7.1 List of Equipment Used during Construction Phase Monitoring

Equipment	Quantity
Swarovski EL 8.5 x 42 Binocular	1


Equipment	Quantity
Swarovski EL Range 8 x 42 Binocular	1
Swarovski ATX 25-60 x 85 Spotting Scope	1
Canon 1Dx Mark II Camera	1
Canon EF300mm F2.8 Lens with Canon 2x Teleconverter	1
Canon PowerShot G7X Camera	1
Garmin GPSMAP 64S	1

- 7.4.3 If event such as absence of White-bellied Sea Eagle during a whole day of monitoring was found during WBSE monitoring, the actions in accordance with the Event and Action Plan should be carried out according to **Appendix M.**
- 7.5 Results and Observations
- 7.5.1 The 8th monthly construction phase monitoring was conducted on 16 and 27 January 2019 twice per month. Since there is no landing point long the western part of SKC, boat survey were used for the monitoring survey. In order to increase the chance of finding the WBSEs, monitoring survey was carried out early in the morning. The weather conditions of monitoring survey were shown in **Table 7.2**.

Table 7.2 Weather Conditions during the WBSE Monitoring

Date	Condition	Temperature ($^{\circ}$ C)
16 February 2019	- Northeast 3 to 4 - Sunny	26
27 February 2019	- North 4 to 5 - Sunny	25

- 7.5.2 During the monitoring survey, two adult WBSEs were recorded; one was standing on a tree and the other one was flying around the area next to the nest. Any disturbances from anthropogenic activities on the island were not recorded during the monitoring survey. However, there were fishing boats moving close the shore were recorded. Since the nesting tree is about 160m away from the shore and it is not accessible, fishing boat activities didn't show any direct disturbance to the WBSE nest. No invasion of other fauna species was recorded as well.
- 7.5.3 No abnormal behavior of the recorded adults was observed during the February 2019 construction phase monitoring. Only two adults WBSE were recorded (**Figure 7.2**). All marine works during the eighth month construction period did not show any affects to the WBSE.
- 7.5.4 A construction phase monitoring will be continued during the core breeding season (between December and May) in order to monitor the utilization of the area by WBSE and their responses to construction disturbance.

7.5.5 Photo record of WBSE from the survey this month is shown below:

Adult WBSE staying at the Area next to its nest

Figure 7.2 Photo Record of WBSE on SKC During the Reporting Period

8. SUMMARY OF MONITORING EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

8.1 The Environmental Complaint Handling Procedure is shown in below **Figure 8.1**:

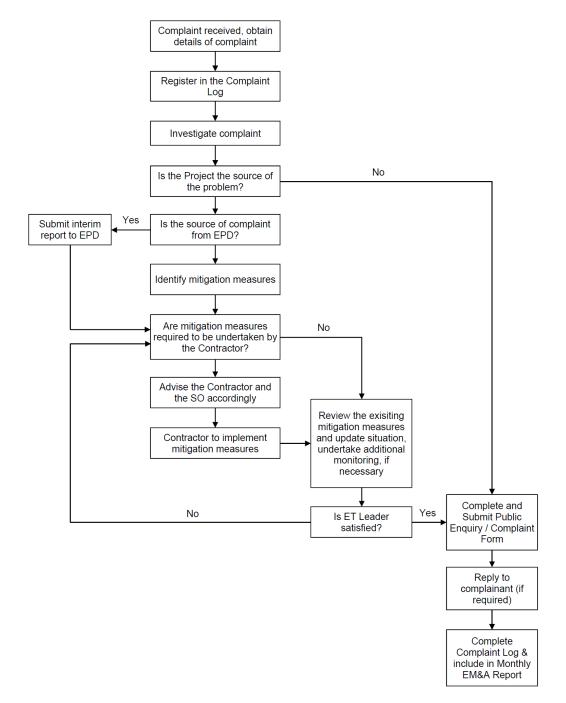


Figure 8.1 Environmental Complaint Handling Procedures

8.2 No exceedance of the Action and Limit Levels of the regular construction noise, coral and WBSE monitoring was recorded during the reporting period.

Table 8.1 Summary of SS Compliance Status at Impact Stations (Mid-Ebb Tide)

Date	B 1	B2	В3	B4	CR1	CR2	F1	Н1	S1	S2	S3	M1
1-2-2019												
4-2-2019												
8-2-2019												
11-2-2019												
13-2-2019												
15-2-2019												
18-2-2019												
20-2-2019												
22-2-2019												
25-2-2019												
27-2-2019												
No. of SS Exceedances	0	0	0	0	0	2	0	0	0	1	0	1

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Action Level recorded at monitoring station located upstream/unrelated
stream (neither upstream nor downstream, far away) of the Project based on dominant
tidal flow
Exceedance of Limit Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
stream of the Project based on dominant tidal flow
Upstream/unrelated stream station with respect to IWMF Project during the respective
tide based on dominant tidal flow
Downstream station with respect to IWMF Project during the respective tide based on
dominant tidal flow/station within the Project site
NA for measurement
Cancelled due to incident or adverse weather

Table 8.2 Summary of SS Compliance Status at Impact Stations (Mid-Flood Tide)

			•			_						
Date	B1	B2	В3	B4	CR1	CR2	F1	H1	S1	S2	S3	M1
1-2-2019												
4-2-2019												
8-2-2019												
11-2-2019												
13-2-2019												
15-2-2019												
18-2-2019												
20-2-2019												
22-2-2019												
25-2-2019												
27-2-2019												
No. of SS Exceedances	0	0	0	0	0	0	0	0	0	0	0	1

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Action Level recorded at monitoring station located upstream/unrelated
stream (neither upstream nor downstream, far away) of the Project based on dominant
tidal flow
Exceedance of Limit Level recorded at monitoring station located downstream of the
Project based on dominant tidal flow
Exceedance of Limit Level recorded at monitoring station located upstream/unrelated
stream of the Project based on dominant tidal flow
Upstream/unrelated stream station with respect to IWMF Project during the respective
tide based on dominant tidal flow
Downstream station with respect to IWMF Project during the respective tide based on
dominant tidal flow/station within the Project site
NA for measurement
Cancelled due to adverse weather

Table 8.3 Summary of SS Compliance Status at Intensive DCM Impact Stations (Mid-Ebb Tide)

Date	I1	I2	I 3	I4	I 5	I 6	I7	I8	I9	I10
11-2-2019										
12-2-2019										
13-2-2019										
14-2-2019										
15-2-2019										
16-2-2019										
17-2-2019										
18-2-2019										
19-2-2019										
20-2-2019										
21-2-2019										
22-2-2019										
23-2-2019										
24-2-2019										
26-2-2019										
28-2-2019										
No. of SS Exceedances	0	4	4	2	2	3	3	3	4	2

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at mobile monitoring station located
downstream of the DCM work groups based on dominant tidal flow during initial
intensive DCM monitoring
Exceedance of Limit Level recorded at mobile monitoring station located
downstream of the DCM work groups based on dominant tidal flow during initial
intensive DCM monitoring
Mobile downstream stations located within fixed distances from the DCM work
groups based on dominant tidal flow during initial intensive DCM monitoring
Cancelled due to the mobile monitoring station positioning on land

Table 8.4 Summary of SS Compliance Status at Intensive DCM Impact Stations (Mid-Flood Tide)

Date	I1	I2	I3	I4	I 5	I 6	I7	I8	19	I10
11-2-2019										
12-2-2019										
13-2-2019										
14-2-2019										
15-2-2019										
16-2-2019										
17-2-2019										
18-2-2019										
19-2-2019										
20-2-2019										
21-2-2019										
22-2-2019										
23-2-2019										
24-2-2019										
26-2-2019										
28-2-2019										
No. of SS Exceedances	8	5	6	9	5	4	8	2	6	6

Degena.				
	No exceedance of Action Level and Limit Level			
	Exceedance of Action Level recorded at mobile monitoring station located			
	downstream of the DCM work groups based on dominant tidal flow during initial			
	intensive DCM monitoring			
	Exceedance of Limit Level recorded at mobile monitoring station located			
	downstream of the DCM work groups based on dominant tidal flow during initial			
	intensive DCM monitoring			
	Mobile downstream stations located within fixed distances from the DCM work			
	groups based on dominant tidal flow during initial intensive DCM monitoring			
	Cancelled due to the mobile monitoring station positioning on land			

- 8.3 Four and one of the General & Regular DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively; twenty-four and sixty-two of the Initial Intensive DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively as summarized in **Table 8.1**, **8.2**, **8.3** & **8.4**, where findings from investigation carried out immediately for each of the exceedance cases during the reporting period, no project-related Action Level & Limit Level exceedance was recorded as shown in **Appendix N**.
- 8.4 The Contractor has been reminded that all measures recommended in the deposited Silt Curtain Deployment Plan shall be fully and properly implemented for the Project as per Clause 2.6A of the FEP.
- 8.5 No notification of summons and prosecution was received in the reporting period.
- 8.6 Statistics on complaints, notifications of summons and successful prosecutions are summarized in **Appendix O**.

9. EM&A SITE INSPECTION

9.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections were carried out on 4, 13, 21 & 26 February 2019 at the site portions list in **Table 9.1** below.

Table 9.1 Site Inspection Record

Date	Inspected Site Portion	Time
4 February 2019	Portion 7 & 7A (Tung Chung)	09:30-11:30
13 February 2019	Portion 1, 1A & 1B (near SKC)	10:40-12:10
21 February 2019	Portion 7 & 7A (Tung Chung)	09:45-11:45
26 February 2019	Portion 1, 1A & 1B (near SKC)	10:15-11:45

- 9.2 One joint site inspection with IEC was carried out on 13 February 2019.
- 9.3 Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections and during the reporting period are summarized in **Table 9.2**.

Table 9.2 Site Observations

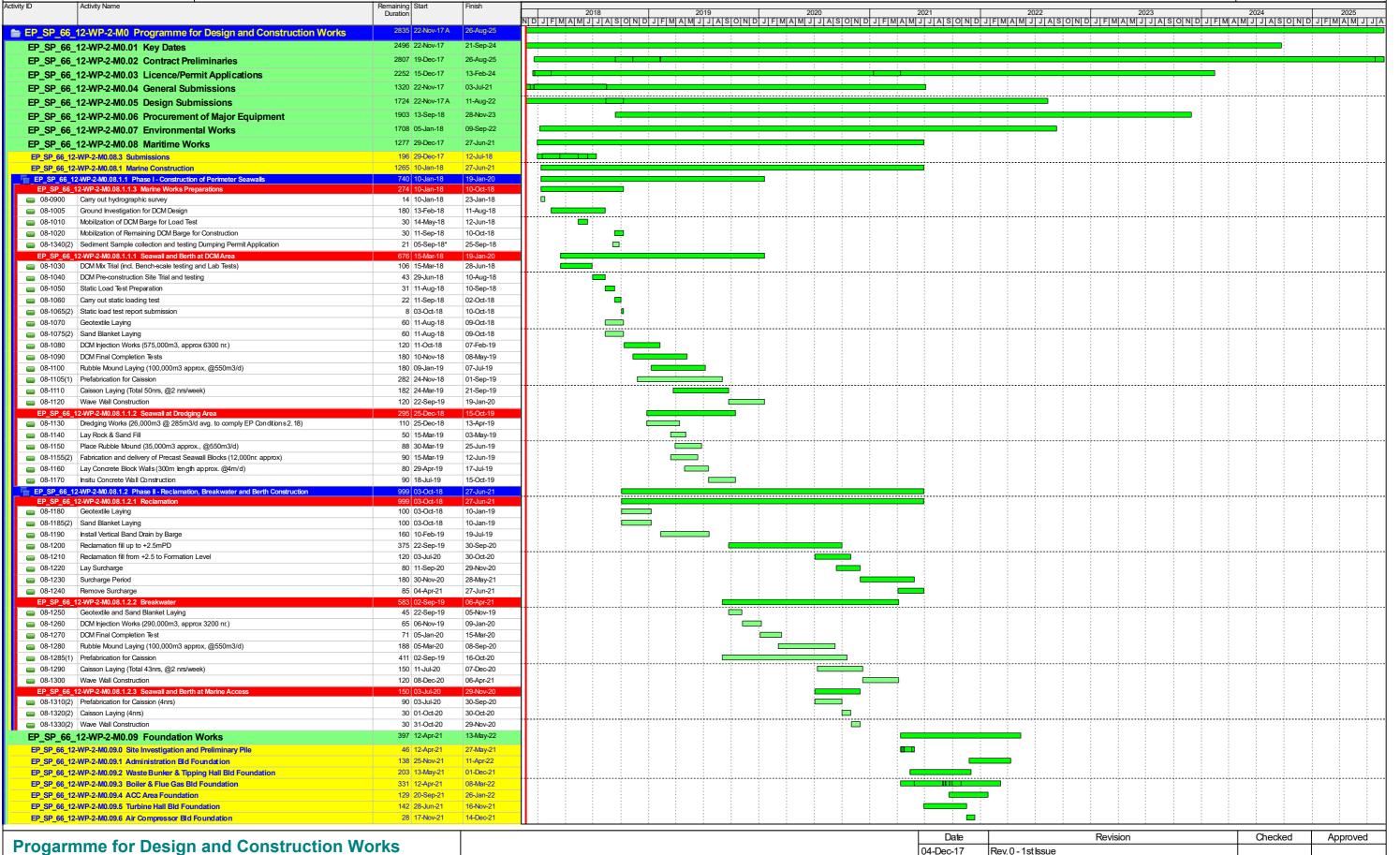
Date	Environmental Observations	Follow-up Status
4 February 2019 (Site inspection)	Observation(s) and Recommendation(s) 1. In Portion 7, a can of paint was found not putting on drip tray.	1. The can of paint was removed.
13 February 2019 (Site inspection)	Observation(s) and Recommendation(s) 1. There was no major observation.	NA
21 February 2019 (Site inspection)	Observation(s) and Recommendation(s) 1. There was no major observation	NA
26 February 2019 (Site inspection)	 Observation(s) and Recommendation(s) 1. On ESC-61, oil stains were observed on ground. 2. On ESC-61, can contained residual lube oil should be separated from general refuse and disposed of as chemical waste. 	 On ESC-61, oil stains was cleaned on ground. On ESC-61, can contained residual lube oil was removed from general refuse.

- 9.4 The Contractor has rectified all of the observations identified during environmental site inspections in the reporting period.
- 9.5 According to the EIA Study Report, Environmental Permit, contract documents and Updated EM&A Manual, the mitigation measures detailed in the documents are implemented as much as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix B**.

10. FUTURE KEY ISSUES

- 10.1 Works to be undertaken in the next reporting month are:
- Marine Site Investigation Works
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- DCM Installation Works
- Cone Penetration Test
- Dredging Works
- 10.2 Potential environmental impacts arising from the above construction activities are mainly associated with water quality, construction noise, waste management and ecology.
- 10.3 The key environmental mitigation measures for the Project in the coming reporting period expected to be associated with the construction activities include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for DCM installation, sand blanket laying works and dredging works;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
- Implementation of cluster MMEZ and inspection of enclosed environment within silt curtains as per DMPFP
- Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 –
 2.21
- Storage, handling and disposal of dredged materials according to Dumping At Sea Ordinance (DASO)
- 10.4 The tentative schedule of regular construction noise, water quality and ecology monitoring in the next reporting period is presented in **Appendix P**. The regular construction noise, water quality and ecology monitoring will be conducted at the same monitoring locations in the next reporting period.

11. CONCLUSION AND RECOMMENDATIONS

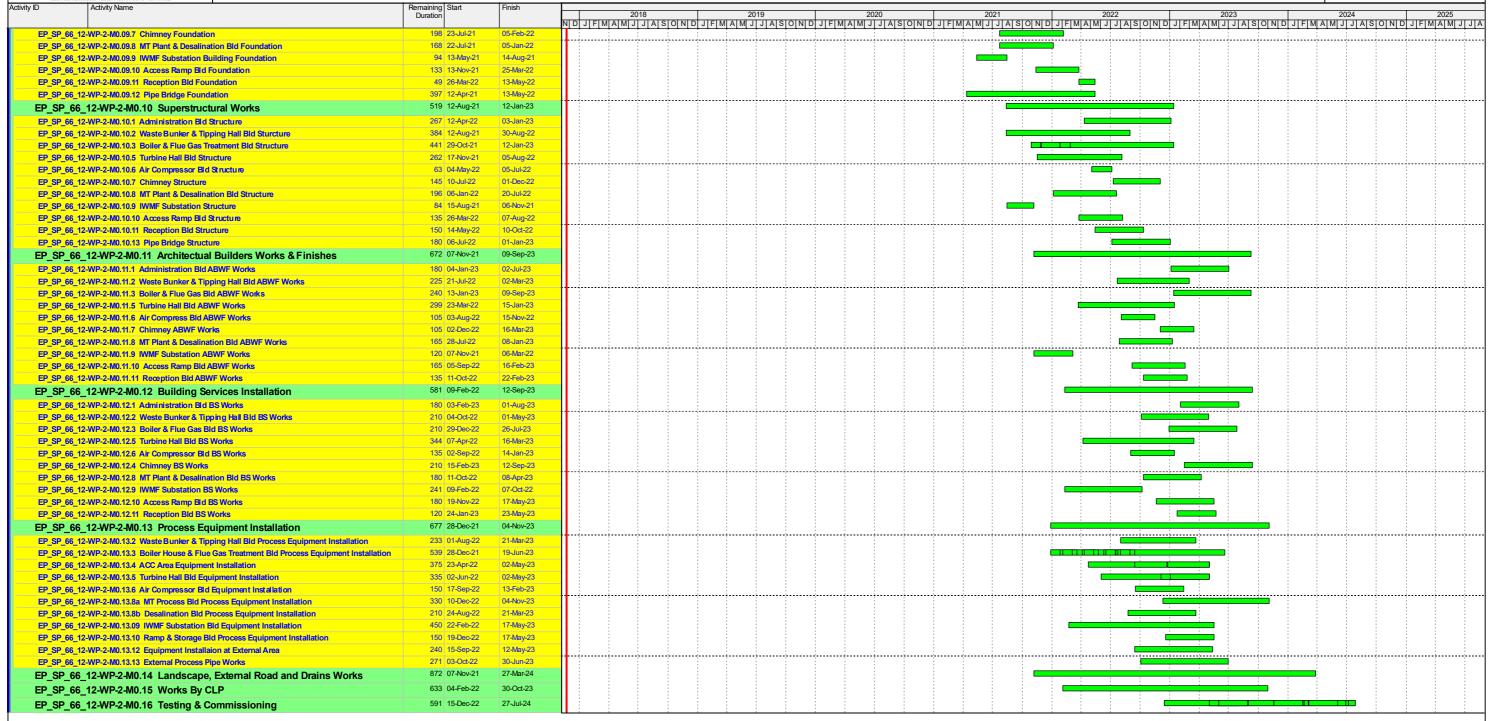

- 11.1 This 8th monthly Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 February to 28 February 2019, in accordance with the Updated EM&A Manual and the requirement under EP- 429/2012/A and FEP-01/429/2012/A.
- 11.2 Construction noise, water quality, construction waste, marine mammal and WBSE monitoring were carried out in the reporting period. No project-related exceedance of the Action and Limit Level was recorded during the reporting period, however, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted.
- 11.3 Weekly environmental site inspection was conducted during the reporting period. Environmental deficiencies were observed during site inspection and were rectified.
- 11.4 According to the environmental site inspections performed in the reporting month, the Contractor is reminded to pay attention on maintaining site tidiness.
- 11.5 Regarding to the deployment of silt curtains as a principal water quality impact mitigation measures on various marine works, the Contractor has been reminded to follow strictly to the design and checking procedure as specified in the Silt Curtain Deployment Plan. As the scale of DCM works will be stepped up in the coming months, the Contractor has been reminded to pay extra attention on the status of deployed silt curtain. The Contractor is reminded that all measures recommended in the deposited silt curtain deployment plan shall be fully and properly implemented for the Project as per EP condition 2.6 of the FEP.
- 11.6 As the dredging works will be starting in the coming months, the Contractor has been reminded to follow strictly to the design and checking procedure as specified in the Silt Curtain Deployment Plan for the dredging works. The Contractor has been reminded to follow the regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 2.21. The Contractor is reminded to follow Dumping At Sea Ordinance (DASO) for the storage, handling and disposal of dredged materials.
- 11.7 No environmental complaint was received in the reporting period.
- 11.8 No notification of summons or prosecution was received since commencement of the Contract.
- 11.9 The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Contract No. EP/SP/66, Integrated Waste Manag	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix A	Master Programme	

Contract No. EP/SP/66/12
Integrated Waste Management Facilities, Phase 1

Summary Progarmme
Page 1 of 2

 04-Dec-17
 Rev. 0 - 1st Issue


 16-Jul-18
 Rev. 1 - Revised to SO's comments

 03-Sep-18
 Rev. 2 - Revised to SO's comments

Contract No. EP/SP/66/12
Integrated Waste Management Facilities, Phase 1

Progarmme for Design and Construction Works
Summary Progarmme

Date	Revision	Checked	Approved
04-Dec-17	Rev. 0 - 1st Issue		
16-Jul-18	Rev. 1 - Revised to SO's comments		
03-Sep-18	Rev. 2 - Revised to SO's comments		

Contract No. EP/SP/66/12	
Integrated Waste Management Facilities, Phase	1

Keppel Seghers – Zhen Hua Joint Venture

Appendix B Summary of Implementation Status of Environmental Mitigation

Appendix B

Table B.1 Implementation Schedule for Air Quality Measures for the IWMF at the artificial island near SKC

	Environmental Protection Macauses /			Imp	lement	ation S	tages*	Relevant Legislation and Guidelines	Implementati on Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec		
S3b.8.1	Air Pollution Control (Construction Dust) Regulation & Good Site Practices Use of regular watering, with complete coverage, to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading	During the construction period	Contractor					Air Pollution Control (Construction Dust) Regulation	N/A

	Environmental Protection Measures / Mitigation Measures	Location / Timing		lmp	lementa	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref			Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	points, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. Imposition of speed controls for vehicles on unpaved site roads. Ten kilometers per hour is the recommended limit. Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise.								
S3b.6.3	Odour Removal by Deodorizers Deodorizers with 95% odour removal efficiency would be installed for the air ventilated from the mechanical treatment plant before discharge to the atmosphere	Waste reception halls, the waste storage area,	IWMF Operator	V		√		EIAO-TM	N/A
S3b.8.2	Air Pollution Control and Stack Monitoring • Air pollution control and stack monitoring system will be installed for the IWMF to ensure that the emissions from the IWMF stack will meet the proposed target emission limits.	IWMF stack emissions / During design & operation phase	IWMF Operator	✓		✓		EIAO-TM, Supporting Document for Application for Variation of Environmental Permit (EP-	N/A

EIA Ref				lmp	lementa	ation S	tages*	Relevant Legislation and Guidelines	Implementati on Status and Remarks
	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec		
	 Voluntary Enhancement Measures in Flue Gas Cleaning and Emission Monitoring: Two-stage bag filter system with reagent recirculation; In addition to SCR, provide SNCR for removal of NO_x; tighten emission limit for half-hourly and daily NO_x to 160 mg/m³ and 80 mg/m₃ respectively; Well-mixed feed waste: to minimize the fluctuation of pollutant loading on the flue gas treatment system; Two more AQMSs would be set up at South Lantau and Shek Kwu Chau respectively; Limit levels will be set under the IWMF DBO contract to require that waste feed shall cease if any of the air pollutant has exceeded 95% of the emission concentration limit as stipulated in the Special Process license; and Each incineration chamber shall be fitted with auxiliary burners to ensure complete burn out of the combustion gases. 							429/2012)	
-	Treated Fly Ash and Air Pollution Control Residues: • During testing and commissioning, the Contractor shall sample and test every container of treated fly ash and air	IWMF stack emissions / During design & operation	IWMF Operator	✓		~		Supporting Document for Application for Variation of Environmental	N/A

	For the constant Books of the Constant			Imp	lement	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the limits and the criteria, the Contractor shall be required to sample and test every container of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria for the next six months. • During the first six months of operation, if the requirements in (a) could be fully conformed with, the Contractor shall sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. The Contractor shall take two samples from each shipload for testing and the Contractor shall not dispose of any of that shipload of treated fly ash and air pollution control residues until the test	phase						Guidelines Permit (EP- 429/2012)	and Remarks

	Environmental Protection Measures / Mitigation Measures			Imp	lement	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref		Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	the two samples does not conform to								
	the limits and the criteria, the								
	Contractor shall be required to sample								
	and test every shipload of treated fly								
	ash and air pollution control residues								
	for conformance to the Incineration								
	Residue Pollution Control Limits and								
	leachability criteria for the next six								
	months. The Contractor shall make								
	due allowance in the Design and the								
	Operation for the time to sample and								
	test treated fly ash and air pollution								
	control residues before disposal.								
	 Provided that there is no non- 								
	conformance to the Incineration								
	Residue Pollution Control Limits and								
	leachability criteria shown in Table 2								
	of the Environmental Permit								
	throughout a continuous sixmonth								
	period in the Operation Period, the								
	testing frequency shall be reduced to								
	monthly interval.Two samples from								
	one shipload of treated fly ash and air								
	pollution control residues shall be								
	collected and tested for conformance								
	to the Incineration Residue Pollution								
	Control Limits and leachability criteria.								
	The Contractor shall not dispose of								
	any of the treated fly ash and air								
	pollution control residues in the								
	shipload which the samples are taken								
	until the test results confirm that the								
	samples conform to the limits and the								

			Imp	lement	ation S	tages*	Relevant	Implementati	
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	on Status and Remarks
	criteria. If the test result confirm that any one of the samples does not conform to the limits and the criteria, the Contractor shall be required to sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit for the next six months.								
-	Bottom Ash: • During testing and commissioning,	IWMF stack emissions /	IWMF Operator	√		√		Supporting Document for	N/A
	the Contractor shall sample and test every container of bottom ash for conformance to the leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the criteria, the Contractor shall be required to sample and test every container of bottom ash for conformance to the leachability criteria for the next six months. • During the first six months of operation, if the requirements in (d) could be fully conformed with, the Contractor shall sample and test one shipload of bottom ash each month for conformance to the leachability criteria shown in Table 2 of the Environmental Permit. The	During design & operation phase						Application for Variation of Environmental Permit (EP- 429/2012)	

	Environmental Protection Measures / Mitigation Measures			Imp	lement	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref		Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	Contractor shall take two samples								
	from the shipload for testing and the								
	Contractor shall not dispose of any of								
	that shipload of bottom ash until the								
	test results confirm that the two								
	samples conform to the criteria. If a								
	test result confirms that any one of								
	the two samples does not conform to								
	the criteria, the Contractor shall be								
	required to sample and test each								
	shipload of bottom ash for								
	conformance to the leachability								
	criteria for the next six months. The								
	Contractor shall make due allowance								
	in the Design and the Operation for								
	the time to sample and test bottom								
	ash before disposal.								
	Provided that there is no non-								
	conformance to the leachability								
	criteria shown in Table 2 of the								
	Environmental Permit throughout a								
	continuous sixmonth period in the								
	Operation Period, the Contractor								
	shall be allowed to take two samples								
	from any one shipload of bottom ash								
	once every six months for								
	conformance to the leachability								
	criteria. The Contractor shall not								
	dispose of any of the bottom ash in								
	the shipload which the samples are taken until the test results confirm								
	that the samples conform to the								
	criteria. If the test result confirm that								

	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Imp	lement	ation St	ages*	Relevant Legislation and Guidelines	Implementati on Status and Remarks
EIA Ref				Des	С	0	Dec		
	any one of the samples does not conform to the criteria, the Contractor shall be required to sample and test one shipload of bottom ash each month for conformance to the leachability criteria shown in Table 2 of the Environmental Permit for the next six months as stipulated above.								

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Integrated Waste Management Facilities, Phase 1

Table B.2 Implementation Schedule for Noise Impact Measures for the IWMF at the artificial island near SKC

	English and a Brack of the Manager (Impl	ementation	Stages*	Relevant	Implementatio
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	СО	Dec	Legislation and Guidelines	n Status and Remarks
S4b.8	Good site practices to limit noise emissions at source and use of quiet plant and working methods, whenever practicable.	Construction	EPD and its contractors		✓		EIAO-TM	Implemented
S4b.6 & S4b.8	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) Stack of the incinerator (ii) Ventilation systems within the IWMF Enclosure and discharge silencer or other acoustic treatment equipment should be installed in the air-cooled chillers Other than provision of silencer or other acoustic treatment equipment for the stack of the incinerator and ventilation system, the detailed design should incorporate the following good practice in order to minimize the nuisance on the neighboring NSRs. (i) The exhaust of the ventilation system and any opening of the building should be located facing away from any NSRs; and (ii) Louver or other acoustic treatment equipment could also be applied to the exhaust of the ventilation system.	Within IWMF area / Construction Period	EPD and its contractors	✓			EIAO-TM	N/A

Integrated Waste Management Facilities, Phase 1

Provision of air-conditioner and double glazed windows to nearby NSR at Shek Kwu Chau (i.e. SARDA) as precautionary measures. Provision of air-conditioner and double operator Operator Application Variation Environment (Environment (for for f ntal	Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012)	V	√	Design team, contractor, IWMF operator		glazed windows to nearby NSR at Shek Kwu Chau (i.e. SARDA) as precautionary
---	-------------------------	--	----------	----------	--	--	--

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table B.3 Implementation Schedule for Water Quality Measures for the Artificial Island near SKC

			Imple	menta	tion S	tages*	Relevant	Implementation Status and Remarks			
Environmental Protection Measures / Mitigation Measures	Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines				
Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to	Work site / During the construction period	Contractor		√			EIAO-TM; ProPECC PN 1/94; WPCO	N/A			
minimise surface runoff and the chance of erosion. These practices include the following items:											
At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.											
Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary.											
Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractor											
	Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Measures / Mitigation Measures Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Environmental Protection Measures Mitigation Measures Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct offsite water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Environmental Protection Measures	Environmental Protection Measures	Measures / Mitigation Measures Timing Timing Timing Timing Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall	Environmental Protection Measures / Mitigation Measures Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 'Construction Site Drainage' should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. • Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. • Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall			

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	piles must be discharged into silt removal facilities.								
	 Measures should be taken to minimize the ingress of site runoff and drainage into excavations. Drainage water pumped out from excavations should be discharged into storm drains via silt removal facilities. 								
	 During rainstorms, exposed slope/soil surfaces should be covered by a tarpaulin or other means, as far as practicable. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC PN 1/94. 								
	Exposed soil areas should be minimized to reduce potential for increased siltation and contamination of runoff.								
	Earthwork final surfaces should be well compacted and subsequent permanent work or surface protection should be immediately performed.								
	Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms.								
S5b.8.1.2	General Construction Activities	Work site /	Contractor		✓			EIAO-TM;	Reminders provided to
	Construction solid waste should be collected, handled and disposed of properly to avoid entering to the nearby watercourses and public drainage	During the construction period						ProPECC PN 1/94; WPCO	the Contractor

				Imple	mentati	on Sta	ges*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	system. Rubbish and litter from construction sites should also be collected to prevent spreading of rubbish and litter from the site area.								
S5b.8.1.3	There is a need to apply to EPD for a discharge license for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge license. All the run-off and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. The beneficial uses of the treated effluent for other on-site activities such as dust suppression and general cleaning etc., can minimize water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO license which is under the ambit of regional office of EPD.	Work site / During the construction period	Contractor		*			EIAO-TM; ProPECC PN 1/94; WPCO	Under application of Discharge License
S5b.8.1.4	Accidental Spillage Contractor must register as a chemical waste producer if chemical wastes would be produced from construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	Work site / During the construction period	Contractor		·			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Implemented

				Imple	mentat	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S5b.8.1.5	Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas which appropriately equipped to control these discharges.	Work site / During the construction period	Contractor		√			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Implemented
S5b.8.1.6	Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses. All waste oils and fuels should be collected in designated tanks prior to disposal.	Work site / During the construction period	Contractor		~			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Deficiency of Mitigation Measures but rectified by the Contractor
S5b.8.1.7	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:	Work site / During the construction period	Contractor		✓			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Deficiency of Mitigation Measures but rectified by the Contractor
	 Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area should be selected at a safe location on site and adequate space should be allocated to the 								

				Imple	mentat	ion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	storage area.								
S5b.8.1.8	Sewage Effluent Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor would be responsible.	Work site / During the construction period	Contractor		✓			EIAO-TM; ProPECC PN 1/94; WPCO	N/A
S5b.8.1.9	 Reclamation and Construction of Breakwaters The proposed dredging and reclamation should be commenced in phases. The breakwaters and seawalls should be constructed and the reclamation should be started within the enclosed breakwaters after the completion of the breakwater. Silt curtain should be applied around caissons / blockwork during the filling of the cell to prevent the loss of fine in the filling material. The maximum production rate for dredging for the anti-scouring protection layer shall not exceed the permitted maximum daily dredging rate and carried out within its respective distance from the nearest nontranslocatable coral community by the dredging contractor as specified in S.2.18 of the Further Environmental Permit (no.:FEP-01/429/2012/A). It is recommended to employ closed grab with small capacity of 2 m³ to control the dredging rate. Any gap that may need to be provided for 	Work site / During the marine construction period	Contractor					EIAO-TM; WPCO, Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012) Further Environmental Permit No. FEP- 01/429/2012/A	Reminder was given to Contractor on proper silt curtains checking and reinforcement of silt curtains efficiency.
	 Any gap that may need to be provided for marine access will be located at the middle of the North Western seawall, away from the identified coral communities and will be shielded by silt curtains systems to control 								

				Imple	mentat	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	sediment plume dispersion.								
	 The silt curtain system at marine access opening should be closed as soon as the barges passes through the marine access opening in order to minimize the period of curtain opening. Filling should only be carried out behind the silt curtain when the silt curtain is completely closed. 								
	 To enhance the effectiveness of the silt curtain at the marine access, the northern breakwater would be built before the commencement of the reclamation to reduce the current velocity towards the marine access opening. 								
	The silt curtain system at marine access opening should be regularly checked and maintained to ensure proper functioning.								
	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25% which is in line with the CEDD's General Specification;								
	 The filling for reclamation should be carried out behind the seawall. The filling material should only consist of public fill, rock and sand. The filling composition and filling rates at each filling area should follow those delineated in Table 1 of the FEP- 01/429/2012/. The filling above high watermark is not restricted; 								
	No dredging should be carried out within 16m to the nearest non-translocatable coral community;								

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	Daily site audit including full-time on-site monitoring by the ET is recommended during the dredging for anti-scouring protection layer for checking the compliance with the permitted no. of grab;								
	 Closed grab dredger should be used to minimize the loss of sediment during the raising of the loaded grabs through the water column; 								
	Frame-type silt curtains should be deployed around the dredging operations;								
	 Floating-type silt curtains should be used to surround the circular cell during the sheetpiling work; 								
	The descent speed of grabs should be controlled to minimize the seabed impact speed;								
	Barges should be loaded carefully to avoid splashing of material;								
	 All barges used for the transport of dredged materials should be fitted with tight bottom seals in order to prevent leakage of material during loading and transport; 								
	 No concurrence works between laying of submarine cables and dredging/reclamation works within the same location is allowed. For works close to each other, the construction program should be arranged so that the dredging/reclamation works within area bounded by the breakwaters and the laying of cables would not operate within a 								

				Imple	menta	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	distance of 80m from each other to avoid any accumulative impact on the environment (in case if such tight schedule is necessary).								
	 All barges should be filled to a level which ensures that material does not spill over during loading and transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action. 								
	No DCM works should be carried out within 100m to the nearest non-translocatable coral colony / colonies.								
	Silt curtains should be employed to enclose DCM field trial and any full scale DCM work to minimize the potential impacts on water aspect.								
	 A sand blanket is to be placed on top of the marine deposit using tremie pipes prior to the DCM ground treatment to avoid seabed sediment disturbance. 								
S5b.8.2.3	Operational Phase Discharges A pipeline drainage system will serve the development area collecting surface runoff from paved areas, roof, etc. Sustainable drainage principle would be adopted in the drainage system design to minimize peak surface runoff, maximize permeable surface and maximize beneficial use of rainwater.	Within IWMF site / During the operational phase	IWMF Operator	✓		✓		WPCO	N/A
S5b.8.2.4	Oil interceptors should be provided in the drainage system of any potentially contaminated areas (such as truck parking area and maintenance workshop) and	Within IWMF site / During the operational	IWMF Operator	~		√		WPCO; WDO	N/A

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	regularly cleaned to prevent the release of oil products into the storm water drainage system in case of accidental spillages. Accidental spillage should be cleaned up as soon as practicable and all waste oils and fuels should be collected and handled in compliance with the Waste Disposal Ordinance.	phase							
S5b.8.2.5	Refuse Entrapment Collection and removal of floating refuse should be performed at regular intervals for keeping the water within the Project site boundary and the neighboring water free from rubbish.	Within the Project site / During the operational phase	IWMF Operator			✓		WPCO	N/A
S5b.8.2.6	Transportation of bottom ash, fly ash and APC residues to WENT Landfill for disposal Covered container should be used in the shipping of the incineration waste to limit the contact between the incineration waste and the marine water. A comprehensive emergency response plan for any accidental spillage should be submitted by the operation contractor to the EPD for agreement before the operation of the facilities. Salvage and cleanup action to recover the spilled incineration waste containers following the spillage should be carried out according to the emergency response plan to mitigate the environmental impact in case of spillage.	Transportat ion of Incineration Ash / During the operational phase	IWMF Operator			✓			N/A

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Integrated Waste Management Facilities, Phase 1

Table B.4 Implementation Schedule for Waste Management Measures for the IWMF at the artificial island near SKC

				Imple	ementa	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.2	Adverse environmental impacts in relation to waste management are not expected, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities would include: Obtain relevant waste disposal permits from appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354) and subsidiary Regulations and the Land (Miscellaneous Provisions) Ordinance (Cap. 28); Provide staff training for proper waste management and chemical handling procedures; Provide sufficient waste disposal points and regular waste collection; Provide appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and Carry out regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; Separate chemical wastes for special handling and disposed of to licensed facility for treatment; and Employ licensed waste collector to collect waste.	• • • • • • • • • • • • • • • • • • • •	Contractor					WDO; LDO; ETWB TCW No. 19/2005; EIAO-TM	Implemented; Chemical waste were collected by licensed chemical waste collector on 14/12/2018.

				Imple	ementa	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.3	Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: Design foundation works that could minimize the amount of excavated material to be generated. Provide training to workers on the importance of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycling; Sort out demolition debris and excavated materials from demolition works to recover reusable/recyclable portions (i.e. soil, broken concrete, metal etc.); Segregate and store different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage the collection of aluminum cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force; Proper storage and site practices to minimize the potential for damage or contamination of construction materials; and	Work Site/ During Design & Construction Period	Contractor						Implemented; N/A for foundation and demolition items

					Imple	mentati	on Stag	es* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementa Agent		Des	С	O D	Legislation and Guidelines	Status and Remarks
	 Plan and stock construction materials carefully to minimize amount of waste to be generated and to avoid unnecessary generation of waste. 								
6b.5.1.7	Dredged Sediment – Application of Dumping Permit The project proponent should agree in advance with MFC of CEDD on the site allocation. The project proponent or contractor for the dredging works shall then apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. The project proponent or contractor should also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged sediment prior to the commencement of the dredging works.	Seawall and Reclamation site / Construction Period	EPD and contractor	its	V	*		DASO ETWB TCW 34/2002	Implemented, marine sediment samples have been collected.
6b.5.1.8	Dredged Sediment – Sediment Quality Report The project proponent or contractor will need to satisfy the appropriate authorities that the quality of the marine sediment to be dredged has been identified according to the requirements of ETWB TCW 34/2002. This should be completed well before the dredging works and would include at least the submission of a formal Sediment Quality Report under Tier I of ETWB TCW No. 34/2002 to DEP for approval. Subject to advice from DEP, it is possible that further marine SI in accordance with ETWB TCW 34/2002	Seawall and Reclamation site / Construction Period	EPD and contractor	its	✓ ·			DASO ETWB TCW 34/2002	Undergoing

				Imple	mentatio	on Sta	ges*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	might be necessary for the application of dumping permit under DASO. In such case, a sediment sampling and testing proposal shall be submitted to and approved by DEP before the additional marine SI works.								
6b.5.1.9	Dredged Sediment – Sediment Transportation The barge transporting the sediments to the designated disposal sites should be equipped with tight fitting seals to prevent leakage and should not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic selfmonitoring devices as specified by the DEP.	Seawall and Reclamation site / Construction Period	EPD and its contractor		~			DASO ETWB TCW 34/2002	N/A
6b.5.1.10	Construction and Demolition Materials In order to minimize the impact resulting from collection and transportation of C&D materials for off-site disposal, the excavated material arising from site formation and foundation works should be reused on-site as backfilling material and for landscaping works as far as practicable. Other mitigation requirements are listed below: • A Waste Management Plan (WMP), which becomes part of the Environmental Management Plan (EMP), should be prepared in accordance with ETWB TCW No.19/2005;	Work Site/ During Design & Construction Period	Contractor	✓	V			ETWB TCW No. 19/2005	Implemented

				Imple	mentat	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be adopted for easy tracking; and 								
	 In order to monitor the disposal of C&D materials at public filling facilities and landfills and to control fly-tipping, a trip- ticket system should be adopted (refer to ETWB TCW No. 31/2004). 								
6b.5.1.11 - 6b.5.1.12	The Contactor should prepare and implement an EMP in accordance with ETWB TCW No.19/2005, which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from construction activities. Such a management plan should incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be submitted to the Engineer for approval. The Contractor All surplus C&D materials arising from or in connection with construction works should become the property of the Contractor when it is removed unless otherwise stated. The Contractor would be responsible for devising a system to work for on-site sorting of C&D materials and promptly removing all sorted and process materials arising from the construction activities to minimize temporary stockpiling on-site. The system should be	Work Site/ During Design & Construction Period	Contractor					ETWB TCW No. 19/2005	Implemented

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	included in the EMP identifying the source of generation, estimated quantity, arrangement for on-site sorting, collection, temporary storage areas and frequency of collection by recycling Contractors or frequency of removal off-site.								
6b.5.1.13	Chemical Wastes Should chemical wastes be produced at the construction site, the Contractor would be required to register with EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible corrosive). The Contractor should employ a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work Site/ During Construction Period	Contractor		•			Waste Disposal (Chemical Waste) (General) Regulation	Implemented
6b.5.1.14	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D materials. A licensed waste collector should be employed by the Contractor to remove general refuse from the site, separately from C&D materials. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	Work Site/ During Construction Period	Contractor		✓				Reminders provided to the Contractor

				Imple	ementation	Stages'		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.16	Biogas Generation	Reclamation	Designer and/or	✓	✓		EPD/TR8/97	N/A
6b.5.1.33	The Contractor shall review the data and analysis results, and the data from further Site Investigation, if any. Subject to the review findings, the following gas protection measures may be considered if necessary:	site (if dredging at the reclamation site is not required) / Design & Construction	contractor					
	- gas monitoring after reclamation;	Period						
	- passive ventilation;							
	- gas impermeable membrane;							
	- ventilation with "at risk" rooms;							
	- protection of utilities or below ground services;							
	- precautions during construction works;							
	- precautions prior to entry of belowground services							
6b.5.2.1	It is recommended that the following good operational practices should be adopted to minimise waste management impacts: • Obtain the necessary waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354) and Waste Disposal (Chemical	IWMF Site/During Operation Period	IWMF Operator				Waste Disposal Ordinance (Cap.354); Waste Disposal (Chemical Waste) (General) Regulation; ETWB TCW No. 1/2004	N/A

				Imple	menta	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	Waste) (General) Regulation; Nomination of an approved person to be responsible for good site practice, arrangements for collection and effective disposal to an appropriate facility of all wastes generated at the								
•	site; Use of a waste haulier licensed to								
	collect specific category of waste;								
•	A trip-ticket system should be included as one of the contractual requirements and implemented by the Environmental Team to monitor the disposal of solid wastes at landfills, and to control fly tipping. Reference should be made to								
	ETWB TCW No. 31/2004.								
•	Training of site personnel in proper waste management and chemical waste handling procedures;								
•	Separation of chemical wastes for special handling and appropriate treatment at a licensed facility;								
•	Routine cleaning and maintenance programme for drainage systems, sumps and oil interceptors;								
•	Provision of sufficient waste disposal points and regular collection for disposal;								
•	Adoption of appropriate measures to minimize windblown litter and dust during transportation of waste, such as covering trucks or transporting wastes								
	in enclosed containers; and Implementation of a recording system								
	for the amount of wastes generated, and disposed of (including recycled								

				Imple	mentat	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	the disposal sites).								
6b.5.2.2	Waste Reduction Measures Good management and control can prevent the generation of significant amounts of waste. It is recommended that the following good operational practices should be adopted to ensure waste reduction:	IWMF Site/ During Operation Period	IWMF Operator			✓			Implemented
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage collection of aluminum cans, plastic bottles and packaging material (e.g. carton boxes) and office paper by individual collectors. Separate labelled bins should be provided to help segregate this waste from other general refuse generated by the work force; and Any unused chemicals or those with remaining functional capacity should be reused as far as practicable. 								
6b.5.2.3	Storage, Handling, Treatment, Collection and Disposal of Incineration By-Products The following measures are recommended for the storage, handling and collection of the incineration by-products: • Ash should be stored in storage silos; • Ash should be handled and conveyed in closed systems fully	IWMF Site/ During Operation Period	IWMF Operator			√		Incineration Residue Pollution Control Limits	N/A

				Imple	mentat	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	segregatedfrom the ambient environment;								
	 Ash should be wetted with water to control fugitive dust, where necessary; 								
	All fly ash and APC residues should								
	be treated, e.g. by cement solidification or chemical stabilization, for compliance with the proposed Incineration Residue Pollution Control Limits and leachability criteria prior to disposal;								
	 The ash should be transported in covered trucks or containers to the designated landfill site. 								
	The Contractor should provide EPD with chemical analysis results of the bottom ash, and treated fly ash and APC residues to confirm that the ash/residue can comply with the proposed Incineration Residue Pollution Control Limits before disposal.								
6b.6.3.1	Fuel Oil Tank Construction and Test The fuel tank to be installed should be of specified durability.	Fuel Oil Storage Tank/ During Design,	IWMF Contractor	✓	√	√			N/A
		Construction							
	Double skin tanks are preferred.	and							
	 Underground fuel storage tank should be placed within a concrete pit. 	Operation Periods							
	The concrete pit shall be accessible								

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	to allow regular tank integrity tests to be carried out at regular intervals.								
	 Tank integrity tests should be conducted by an independent qualified surveyor or structural engineer. 								
	 Any potential problems identified in the test should be rectified as soon as possible. 								
6b.6.3.1	 Fuel Oil Pipeline Construction and Test Installation of aboveground fuel oil pipelines is preferable; if underground pipelines are unavoidable, concrete lined trenches should be constructed to contain the pipelines. Double skin pipelines are preferred. Distance between the fuel oil refuelling points and the fuel oil storage tank shall be minimized. Integrity tests for the pipelines should be conducted by an independent qualified surveyor or structural engineer at regular intervals. Any potential problems identified in the test should be rectified as soon as possible. 	Fuel Oil Pipelines/ During Design, Construction and Operation Periods	IWMF Contractor	•		✓			N/A
6b.6.3.1	Fuel Oil Leakage Detection Installation of leak detection device at storage tank and pipelines.	Fuel Oil Storage Tank and Pipelines/	IWMF Contractor	√	√	√			N/A

				Imple	menta	ion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 Installation and use of pressure gauges (e.g. at the two ends of a filling line) in fuel filling, which allows unexpected pressure drop or difference and sign of leakage to be detected. 	During Design, Construction and Operation Periods							
6b.6.3.1	 Storage Tank Refuelling Storage tank refuelling (from road tanker) should only be conducted by authorized staff of the oil company using the company's standard procedures. 	Fuel Oil Refuelling Point/ During Operation Period	IWMF Operator			√			N/A
6b.6.3.1	Fuel Oil Spillage Response An Oil Spill Response Plan should be prepared by the operator to document the appropriate response procedures for oil spillage incidents in detail. General procedures to be taken in case of fuel oil spillage are presented below. • Training - Training on oil spill response actions should be given to relevant staff. The training shall cover the followings:	IWMF Site/ During Operation Period	IWMF Operator			✓			N/A
	 Tools & resources to combat oil spillage and fire, e.g. locations of oil spill handling equipment and fire fighting equipment; General methods to deal with oil spillage and fire incidents; Procedures for emergency drills in the event of oil spills and fire; and 								

				Imple	menta	tion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	➤Regular drills shall be carried out.								
	Communication								
	-Establish communication channel with the Fire Services Department (FSD) and EPD to report any oil spillage incident so that necessary assistance from relevant department can be quickly sought.								
	Response Procedures								
	 -Any fuel oil spillage within the IWMF site should be immediately reported to the Plant Manager with necessary details including location, source, possible cause and extent of the spillage. 								
	 -Plant Manager should immediately attend to the spillage and initiate any appropriate action to confine and clean up the spillage. The response procedures shall include the following: >Identify and isolate the source of spillage as soon as possible. >Contain the oil spillage and avoid infiltration into soil/ groundwater and discharge to storm water channels. >Remove the oil spillage. 								
	Clean up the contaminated area.								
	If the oil spillage occurs during storage tank refuelling, the refueling operation should immediately be								

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant	lmmlementetien
				Des	С	0	Dec	Legislation and Guidelines	Implementation Status and Remarks
	stopped. Recovered contaminated fuel oil and the associated material to remove the spilled oil should be considered as chemical waste. The handling and disposal procedures for chemical wastes are discussed in the following paragraphs.								
6b.6.3.2	 Chemicals and Chemical Wastes Handling & Storage Chemicals and chemical wastes should only be stored in suitable containers in purpose-built areas. The storage of chemical wastes should comply with the requirements of the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. The storage areas for chemicals and chemical wastes shall have an impermeable floor or surface. The impermeable floor/ surface shall possess the following properties: Not liable to chemically react with the materials and their containers to be stored. Able to withstand normal loading and physical damage caused by container handling 	Chemicals and Chemical Wastes Storage Area / During Operation Period	IWMF Operator			V			N/A
	The integrity and condition of the impermeable floor or surface should								

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant	Implementation
				Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	be inspected at regular intervals to ensure that it is satisfactorily maintained								
	For liquid chemicals and chemical wastes storage, the storage area should be bunded to contain at least 110% of the storage capacity of the largest containers or 20% of the total quantity of the chemicals/chemical wastes stored, whichever is the greater.								
	Storage containers shall be checked at regular intervals for their structural integrity and to ensure that the caps or fill points are tightly closed.								
	Chemical handling shall be conducted by trained workers under supervision.								
6b.6.3.2	Chemicals and Chemical Wastes Spillage Response A Chemicals and/ or Chemical Wastes Spillage Response Plan shall be prepared by the operator to document in detail the appropriate response procedures for chemicals or chemical wastes spillage incidents. General procedures to be undertaken in case of chemicals/ chemical waste spillages are presented below.	IWMF Site/ During Operation Period	IWMF Operator			✓			N/A
	• Training								
	- Training on spill response actions								

				Imple	menta	tion S	tages*		Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	should be given to relevant staff. The training shall cover the followings:								
	Tools & resources to handle spillage, e.g. locations of spill handling equipment;								
	General methods to deal with spillage; and								
	Procedures for emergency drills in the event of spills.								
	 Communication Establish communication channel with FSD and EPD to report the spillage incident so that necessary assistance from relevant department can be quickly sought. 								
	Response Procedures								
	 Any spillage within the IWMF site should be reported to the Plant Manager. 								
	 Plant Manager shall attend to the spillage and initiate any appropriate actions needed to confine and clean up the spillage. The response procedures shall include the followings: 								
	Identify and isolate the source of spillage as soon as possible;								
	Contain the spillage and avoid infiltration into soil/								

				Imple	mentati	ion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	groundwater and discharge to storm water channels (in case the spillage occurs at locations out of the designated storage areas);								
	Remove the spillage; the removal method/ procedures documented in the Material Safety Data Sheet (MSDS) of the chemicals spilled should be observed;								
	Clean up the contaminated area (in case the spillage								
	The waste arising from the cleanup operation should be considered as chemical wastes.								
6b.6.3.3	Preventive Measures for Incineration By- products Handling The recommended measures listed below can minimize the potential contamination to the surrounding environment due to the incineration by-products:	Storage, Handling & Collection of Incineration Ash at IWMF/ During Operation	IWMF Operator			✓			N/A
	Ash should be stored in storage silos;	Period							
	 Ash should be handled and conveyed in closed systems fully 								
	 Ash should be wetted with water to control fugitive dust, where necessary; 								
	All fly ash and APC residues should be treated, e.g. by cement solidification or chemical								

				Imple	menta	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	stabilization, for compliance with the proposed Incineration Residue Pollution Control Limits and leachability criteria prior to disposal;								
	 The ash should be transported in covered trucks or containers to the designated landfill site. 								
6b.6.3.4 - 6b.6.3.6	Incident Record After any spillage, an incident report should be prepared by the Plant Manager. The incident report should contain details of the incident including the cause of the incident, the material spilled and estimated spillage amount, and also the response actions undertaken. The incident record should be kept carefully and able to be retrieved when necessary. The incident report should provide sufficient details for the evaluation of any environmental impacts due to the spillage and assessment of the effectiveness of measures taken. In case any spillage or accidents results in significant land contamination, EPD should be informed immediately and the IWMF operator should be responsible for the cleanup of the affected area. The responses procedures described in Section 6b.6.3.1 and Section 6b.6.3.2 of EIA report should be followed accordingly together with the land contamination assessment and remediation guidelines	IWMF Site/ During Operation Period	IWMF Operator			✓		Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management and the Guidance Note for Contaminated Land and Remediation.	N/A

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	stipulated in the Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management and the Guidance Note for Contaminated Land and Remediation.								

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Integrated Waste Management Facilities, Phase 1

Table B.5 Implementation Schedule for Ecological Quality Measures for the IWMF at the artificial island near SKC

				Impl	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
7b.8.2.1	Measures to avoid direct loss of intertidal habitat The site boundary has been proposed to avoid direct contact with the intertidal natural rocky shore of Shek Kwu Chau. It avoids direct loss of intertidal communities and the existing natural rocky shore habitat, where Reef Egret and White-bellied Sea Eagle have been recorded within and in the vicinity of this habitat.	IWMF site	Design team	√				EIAO-TM	N/A
7b.8.2.2	Measures to minimise loss of coastal subtidal habitat Extensive coral colonies were recorded at the coastal hard bottom habitat at Shek Kwu Chau. To avoid and minimise the extensive direct impact on the coral colonies, the proposed reclamation area has been moved further offshore to minimise loss of subtial habitat near shore.	IWMF site	Design team	✓				EIAO-TM	N/A
7b.8.2.3	 Zero Discharge Scheme The design scheme of the Project has avoided discharge of wastewater into the marine environment. mechanical treatment plant, or for onsite washdown and landscape. 	IWMF site	Design team, IWMF operator	✓		✓		WPCO	N/A
7b.8.2.4	Measures to avoid loss of plant species of conservation importance Landing portal construction works would not cause direct lost to the recorded individual of protected plant species,	Cheung Sha landing portal	Design team, Contractor	√	√		√	EIAO-TM	N/A

				Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 Aquilaria sinensis, at the coastal shrubland habitat at Cheung Sha. As a precautionary measure, the plant should be tagged with eye-catching tape and fenced off prior to works, in order to avoid any damage by workers. 								
7b.8.3.1- 7b.8.3.15	Measures to minimise water quality impact Measures for water quality as recommended in Section 5b of the EIA Report should be implemented.	Work site	Design team, contractor, IWMF operator	<	✓	✓	✓	ProPECC PN 1/94; WPCO	Implemented
7b.8.3.16 - 7b.8.3.30	Measures to minimise disturbance on Finless Porpoise Minimisation of Habitat Loss for Finless Porpoise • Substantial revision has been made on the layout plan and form of the breakwater, in order to minimise the potential loss of important habitat for Finless Porpoise. The revision has greatly reduced the size of the embayment area, as well as the Project footprint. As a result, the size of habitat loss for Finless Porpoise has reduced from the original ~50 ha, down to ~31 ha. Avoidance of peak season for finless porpoise occurrence	IWMF site,	Design team, contractor, IWMF operator	~	✓	V		EIAO-TM, Supporting Document for Application for Variation of the Environmental Permit (EP- 429/2012)	Implemented for avoidance of construction works tha may produce underwater acoustic disturbance, Vessel Travel Route implementation, training of staff, MMEZ and marine mammal watching works during deployment of silt curtain; N/A for others
	To minimise potential acoustic disturbance from construction activities								

				Imple	ementa	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	on Finless Porpoise, construction works								
	that may produce underwater acoustic								
	disturbance should be scheduled outside the months with peak Finless Porpoise								
	occurrence (December to May), including:								
	occurrence (December to May), including.								
	- sheet piling works for construction								
	of cofferdam surrounding the								
	reclamation area (Phase 1);								
	- sheet piling works for construction of								
	the shorter section of breakwater								
	(Phase 1);								
	- sheet piling works for construction of								
	the remaining section of breakwater (Phase 3);								
	- bored piling works for berth area (Phase								
	3); and								
	- submarine cable installation works								
	between Shek Kwu Chau and Cheung								
	Sha.								
	Such works should be restricted within June								
	to November. This approach would not only avoid the peak season for Finless Porpoise								
	occurrence, the magnitude of impacts								
	arise from acoustic disturbance would also								
	be minimised.								
	Submarine cable installation works								
	Since the DCM ground treatment and the								
	installation of precast seawalls and								

				Imple	<u>eme</u> nta	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	breakwaters should generate no underwater								
	acoustic disturbance to Finless Porpoise, no								
	specific mitigation measures are required.								
	Opt for quieter construction methods and plants								
	Considering the sensitivity of marine								
	mammals to underwater acoustic								
	disturbance, instead of the previously								
	proposed conventional breakwater and								
	reclamation peripheral structure, which								
	requires noisy piling works, the current circular cells structure for breakwater								
	and reclamation peripheral structure is								
	proposed. A quieter sheet piling method								
	using vibratory hammer or hydraulic impact								
	hammer, should be adopted for the								
	installation of circular cells for cellular								
	cofferdam and northern breakwater								
	during Phase 1, and southern								
	breakwater Phase 3;								
	Non-percussive bore piling method would								
	be adopted for the installation of tubular								
	piles for the berth construction during								
	Phase 3.								
	Monitored exclusion zones								
	During the installation/re-								
	installation/relocation process of floating type								
	silt curtains, in order to avoid the accidental								
	entrance and entrapment of marine								

				Imple	<u>emen</u> ta	ation :	Stages*	* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	mammals within the silt curtains, a								
	monitored exclusion zone of 250 m radius								
	from silt curtain should be implemented.								
	The exclusion zone should be closely								
	monitored by an experienced marine								
	mammal observer at least 30 minutes								
	before the start of installation/re-								
	installation/relocation process. If a marine mammal is noted within the exclusion								
	zone, all marine works should stop								
	immediately and remain idle for 30 minutes,								
	or until the exclusion zone is free from								
	marine mammals.								
	The experienced marine mammal observer								
	should be well trained to detect marine								
	mammals. Binoculars should be used to								
	search the exclusion zone from an								
	elevated platform with unobstructed visibility.								
	The observer should also be independent								
	from the project proponent and has the								
	power to call-off construction activities.								
	 In addition, as marine mammals cannot 								
	be effectively monitored within the								
	proposed monitored exclusion zone at								
	night, or during adverse weather								
	conditions (i.e. Beaufort 5 or above,								
	visibility of 300 meters or below), marine								
	works should be avoided under weather								
	conditions with low visibility.								

				Imple	<u>emen</u> ta	ation S	Stages*	* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	Marine mammal watching plan								
	Upon the completion of the installation/re-installation/relocation of floating type silt curtain, all marine works would be conducted within a fully enclosed environment within the silt curtain, hence exclusion zone monitoring would no longer be required. Subsequently, a marine mammal watching plan should be implemented.								
	The plan should include regular inspection of silt curtains, and visual inspection of the waters surrounded by the curtains. Special attention should be paid to Phase 2 (reclamation) where the floating type still curtain would be opened occasionally for vessel access, leaving a temporary 50 m opening. An action plan should be devised to cope with any unpredicted incidents such as the case when marine mammals are found within the waters surrounded by the silt curtains.								
	Small openings at silt curtains								
	The openings for vessel access at the silt curtains should be as small as possible to minimise the risk of accidental entrance.								
	Adoption of regular travel route								

				Imple	<u>emen</u> ta	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	During construction and operation, captains								
	of all vessels should adopt regular travel								
	route, in order to minimize the chance of								
	vessel collision with marine mammals,								
	which may otherwise result in damage to								
	health or mortality. The regular travel route should avoid areas with high								
	sighting density of Finless Porpoise as much								
	as possible.								
	as possible.								
	Vessel speed limit								
	The frequent vessel traffic in the vicinity								
	of works area may increase the chance of								
	mammal mammals being killed or								
	seriously injured by vessel collision. A								
	speed limit of ten knots should be strictly								
	enforced within areas with high density of Finless Porpoise.								
	Filliess Folpoise.								
	Passive acoustic monitoring and land-based								
	theodolite monitoring surveys should be								
	adopted to verify the predicted impacts								
	and effectiveness of the proposed								
	mitigation measures.								
	Training of Staff								
	Staff, including captains of vessels,								
	should be aware of the guidelines for safe								
	vessel operations in the presence of								
	cetaceans during construction and								

				Impl	ement	tation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	operation phases. Adequate trainings should be provided								
7b.8.3.31 - 7b.8.3.34	Measures to minimise impact on corals Coral translocation	IWMF site	Design team, contractor, IWMF operator	✓	√	✓	*	EIAO-TM	Implemented, tagged coral found missing after hitting by typhoons
	Coral communities within and in proximity to the proposed dredging sites would be disturbed by the Project due to the dredging operations. In order to minimise direct loss of coral communities, translocation of corals that are attached to movable rocks with diameter less than 50 cm are recommended. In order to avoid disturbance to corals during the spawning period, the spawning season of corals (June to August) should be avoided; and that translocation should be carried out during the winter season (November-March).								Re-tagging of 10 coral colonies at indirect impact site and control site were conducted in November and December 2018 respectively.
	The REA survey results suggest that the 198 directly affected coral colonies were attached to movable rocks (less than 50 cm in diameter). It is technically feasible to translocate them to avoid direct loss.								
	Prior to coral translocation, a more detailed baseline survey, including event / action plan for coral monitoring should be submitted upon approval of this Project, prior to commencement of								

				lmp	oler	menta	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	S	С	0	Dec	Legislation and Guidelines	Status and Remarks
	construction works. Advice from relevant governmental departments (i.e. AFCD) and professionals would be sought after, in order to identify a desirable location for the relocation of coral communities. Post-translocation monitoring on the translocated corals should also be considered.									
	Coral monitoring programme									
	A coral monitoring programme is recommended to assess any adverse and unacceptable impacts to the coral communities at the coasts of Shek Kwu Chau during construction of the Project.									
	Phasing of Works									
	To minimize environmental impacts, the proposed phasing of construction works has been carefully designed to reduce the amount of concurrent works, hence minimize SS elevation and the associated impacts on corals.									
7b.8.3.35 - 7b.8.3.41	Specific measures to minimize disturbance on breeding White-bellied Sea Eagle Avoidance of noisy works during the breeding season of White-bellied Sea Eagle	IWMF site, marine traffic route	Design Team Contractor, IWN operator			√	√	✓	EIAO-TM	Implemented
	To minimize potential noise disturbance									

			Implementation Agent	Imple	<u>ement</u>	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	from construction activities on WBSE, noisy								
	construction works should be scheduled outside their breeding season (December to								
	May) to minimise potential degradation in								
	breeding ground quality and breeding								
	activities, including:								
	- sheet piling works for construction								
	of cofferdam surrounding the								
	reclamation area (Phase 1);								
	 sheet piling works for construction of the shorter section of breakwater 								
	(Phase 1);								
	- sheet piling works for construction of								
	the remaining section of breakwater								
	(Phase 3); and								
	- bored piling works for berth area (Phase								
	3).								
	Opt for quieter construction methods and plants								
	To minimise potential construction noise								
	disturbance on WBSE, quieter construction								
	methods and plants should be adopted. The								
	recommended noise mitigation measures in								
	the Noise chapter (Section 4b.8 of the EIA Report) should be implemented to								
	minimise potential noise disturbance to								
	acceptable levels.								
	Restriction on vessel access near the nest of White-bellied Sea Eagle								

			Implementation Agent	Imple	<u>ement</u>	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 During construction and operation, in order to minimize disturbance on the existing WBSE nest, a pre-defined practical route to restrict vessel access near the nest should be adopted to keep vessels and boats as far away from the nest as possible. White-bellied Sea Eagle monitoring programme A WBSE monitoring programme is recommended to assess any adverse and unacceptable impacts to the breeding activities of WBSE during construction and operation of the Project. Monitoring surveys for WBSE would include preconstruction phase (twice per month for duration of three months during their breeding season -between December and May, immediately before the commencement of works), construction phase, and operation phase (two years after the completion of construction works). 								
	Surveys should be conducted twice per month during their breeding season (from December to May); and once per month outside breeding season (June to November). More details on monitoring for WBSE are presented in the EM&A Manual.								

				Impl	ement	ation	Stages*	 Relevant Legislation and Guidelines 	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec		Status and Remarks
	Education of staff								
	Staff, including captains of all vessels during construction and operation phases, should be aware of the ecological importance of WBSE. Awareness should be raised among staff to minimise any intentional or unintentional disturbance to the nest.								
	Minimisation of Glare Disturbance								
	To minimise glare disturbance on WBSE, which may cause disorientation of birds by interfering with their magnetic compass, and disruption in behavioural patterns such as reproduction, fat storage and foraging pattern, any unnecessary outdoor lighting should be avoided, and in-ward and down-ward pointing of lights should be adopted.								
	Construction of Seawall/Breakwaters To widen the open channel between the Artificial Island and Shek Kwu Chau. To design the precast concrete seawall with environmental friendly features.	IWMF site	Design team, contractor, IWMF operator	✓	✓			Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012)	N/A
7b.8.3.42	Opt for Quieter Construction Methods and Plants • Quieter construction methods and plants	Work site	Design team, contractor, IWMF operator	· ·	✓	✓	/	EIAO-TM	Implemented

		Location / Timing		Imple	ement	ation	Stages*	 Relevant Legislation and Guidelines 	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures		Implementation Agent	Des	Des C O	0	Dec		Status and Remarks
	should be used to minimise disturbance to the nearby terrestrial habitat and the associated wildlife.								
7b.8.3.43	Measures to minimize impacts from artificial lighting Unnecessary lighting should be avoided, and shielding of lights should be provided to minimize disturbance from light pollution on fauna groups.	IWMF site	Design team, contractor, IWMF operator	✓	✓	✓		EIAO-TM	Implemented
7b.8.3.44 - 7b.8.3.45	Measures to minimize accidental spillage Regular maintenance of vessels, vehicles and equipment that may cause leakage and spillage should only be undertaken within pre-designated areas, which are appropriately equipped to control the associated discharges. Oils, fuels and chemicals should be contained in suitable containers, and only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses. All waste oils and fuels should be collected in designated tanks prior to disposal.	Work site	Contractor, IWMF operator		✓	✓	✓	EIAO-TM	Deficiency of Mitigation Measures but rectified by the Contractor
7b.8.3.46	Measures to minimise sewage effluent Temporary sanitary facilities, such as	Work site	Contractor		√			EIAO-TM	N/A

		Location / Timing	Implementation Agent	Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures			Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce.								
7b.8.3.47	 Measures to minimise drainage and construction runoff Potential ecological impacts resulted from potential degradation of water quality due to unmitigated surface runoff could be minimised via the detailed mitigation measures in Section 5b.8 of the EIA Report. The following presents some of the mitigation measures: On-site drainage system with implemented sedimentation control facilities. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. Provision of embankment at boundaries of earthworks for flood protection. Water pumped out from foundation piles must be discharged into silt removal facilities. During rainstorms, exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable. Exposed soil surface should be minimized to reduce siltation and runoff. Earthwork final surfaces should be 	Work site	Contractor		•			EIAO-TM	N/A

		Location / Timing	Implementation Agent	Imple	ementa	ation S	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures			Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	well compacted. Subsequent permanent surface protection should be immediately performed. - Open stockpiles of construction materials, and construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms.								
7b.8.3.48	Measures to minimise impacts from general construction activities	Work site	Contractor		✓			EIAO-TM	Implemented
	To avoid the entering of construction solid waste into the nearby habitats, construction solid waste should be collected, handled and disposed of properly to avoid entering to the nearby habitats. It is recommended to clean the construction sites on a regular basis.								
7b.8.3.49	Pest Control Good waste management practices should be adopted at the IWMF in order to minimise the risk of introduction of pest to the island: - Transportation of wastes in enclosed containers - Waste storage area should be well maintained and cleaned - Waste should only be disposed of at designated areas	IWMF site	IWMF operator			✓			N/A
	at designated areas - Timely removal of the newly arrived waste - Removal of items that are capable of								

		Location / Timing	Implementation Agent	Imple	ementa	tion :	Stages*	* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures			Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	retaining water - Rapid clean up of any waste spillages - Maintenance of a tidy and clean site environment - Regular application of pest control - Education of staff the importance of site cleanliness								
7b.8.3.50	Control of Marine Habitat Quality during Operation Phase	IWMF site	IWMF operator			✓		EIAO-TM; WPCO	N/A
	Depending on the seabed condition of the approach channel for marine vessels during operation phase of the IWMF, maintenance dredging may be required to ensure safe access. In order to avoid degradation in water quality due to elevation in SS and dispersion of sediment plume due to dredging works, it is recommended that any future maintenance dredging works should not be carried out within 100 m from the shore, similar to that of the dredging for anti-scouring protection layer during construction phase. All maintenance dredging works should be carried out with the implementation of silt curtain to control the dispersion of SS. The production rate should comply with the permit dredging rate and number of grab per hour.								
7b.8.4.1 - 7b.8.4.8	Compensation of loss of important habitat of Finless Porpoise	Waters between Shek Kwu Chau and Soko Islands	Project Proponent	✓		✓		EIAO-TM	N/A

				Imple	<u>em</u> ent	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	Designation of Marine Park								
	 The Project Proponent has made a firm commitment to seek to designate a marine park of approximately 700 ha in the waters between Soko Islands and Shek Kwu Chau, in accordance with the statutory process stipulated in the Marine Parks Ordinance, as a compensation measure for the habitat loss arising from the construction of the IWMF at the artificial island near SKC. The Project Proponent shall seek to complete the designation by 2018 to tie in with the operation of the IWMF at the artificial island near SKC. 								
	A further study should be carried out to review relevant previous studies and collate available information on the ecological characters of the proposed area for marine park designation; and review available survey data for Finless Porpoise, water quality, fisheries, marine traffic and planned development projects in the vicinity. Based on the findings, ecological profiles of the proposed area for marine park designation should be established, and the extent and location of the proposed marine park be determined. The adequacy of enhancement measures should also be reviewed.								

		Location / Timing	_	Implementation Agent	Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures		-		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 In addition, a management plan for the proposed marine park should be proposed, covering information on the responsible departments for operation and management (O&M) of the marine park, as well as the O&M duties of each of the departments involved. Consultation with relevant government departments and stakeholders should be conducted under the study. The study should be submitted to Director of Environmental Protection (DEP) for approval before the commencement of construction works. The Project Proponent should provide assistance to AFCD during the process of the marine park designation. 									
7b.8.5.1 - 7b.8.5.4	Additional Enhancement or Precautionary Measures Deployment of Artificial Reefs • Deployment of artificial reefs (ARs) is an enhancement measure for the marine habitats. ARs are proposed to be deployed within the proposed marine park under this Project. The exact location, dimension and type of ARs to be deployed are to be further investigated along with the further study of the proposed marine park under this Project. The proposed ARs would be deployed at the same time as the complete	proposed marine p	the park this	Project Proponent	V		√		EIAO-TM	N/A

				Impl	ement	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	designation of marine park.								
	Release of Fish Fry at Artificial Reefs and Marine Park								
	 Release of fish fry at the proposed ARs, as well as the proposed marine park under this study, should enhance the fish resources in the nearby waters, and subsequently food sources for Finless Porpoise. The proposed ARs with various micro-habitats would have the potential to provide shelter and nursery ground for the released fish fry. The frequency and quantity of fry to be released should be agreed by AFCD. 								

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table B.6 Implementation Schedule for Fisheries Measures for the IWMF at the artificial island near SKC

	Environmental Protection Measures / Mitigation Measures				Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref		Location / Timing	Implemer Age		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
8b.8.1.2	Measure to minimize loss of and disturbance on fisheries resources	IWMF site	Design contractor	team,	✓	√		√	EIAO-TM	N/A
	 Alteration to the phasing of works, construction method, and layout plan of the IWMF at the artificial island near SKC has been made. The total fishing ground to be permanently lost due to the project has been significantly reduced from ~50 ha to ~31 ha. By adopting the current circular cells instead of the conventional seawall construction method, SS elevation would be greatly reduced, minimizing adverse impact on the health of fisheries resources. 									
8b.8.1.3	Measure to minimize impingement and entrainment	IWMF site	Design contractor, operator	team, IWMF	✓	✓	✓		EIAO-TM	N/A
	 Provision of a screen at the water intake point for desalination plant would be essential to minimize the risk of impingement and entrainment of fisheries resources (including fish, larvae and egg) through the intake point. 									

						Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location Timing	-	Impleme Age	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks	
8b.8.1.4- 8b.8.1.6	 Measures to control water quality No wastewater effluent, anti-fouling agent, heavy metals and other contaminants would be released during operation phase of the Project. Mitigation measures recommended in the water quality impact assessment during construction and operation would serve to protect fisheries resources from indirect impacts resulted from the Project 			Design contractor, operator	team, IWMF	*	•	V	✓	EIAO-TM	Implemented
8b.8.1.7 - 8b.8.1.8	Additional Enhancement / Precautionary Measures Artificial Reefs (ARs) are proposed to be deployed within the proposed marine park under this Project as an enhancement measure for the marine habitats. This enhancement feature would bring positive impacts to the previously identified important spawning and nursery ground for fisheries resources. Release of Fish Fry at Artificial Reefs Release of fish fry has been proposed under this Project. The proposed deployment of ARs within the proposed marine park would provide shelter and nursery ground for the released fish fry. The frequency and quantity of fry to be released should be agreed by AFCD.	proposed marine p in the wa between S Islands Shek h Chau	ark ters	Project Pro	ponent	✓		V		EIAO-TM	N/A

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Integrated Waste Management Facilities, Phase 1

Table B.7 Implementation Schedule for Landscape and Visual Measures for the IWMF at the artificial island near SKC

	Environmental Protection		Implementation	Impl	ement	ation	Stages*	Relevant	Implementation	
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks	
S10b.10 MLVC- 01	Grass-hydroseeded bare soil surface and stock pile area	Work site / During construction phase	Contractor		√				N/A	
S10b.10 MLVC-02	Landscape Design 1) Early planting using fast grow trees and tall shrubs at strategic locations within site as buffer to block view corridors to the site from the VSRs, and to locally screen haul roads, excavation works and site preparation works.	Work site / During design & construction phases	Contractor	✓	✓				N/A	
	Use of tree species of dense tree crown to serve as visual barrier.									
	3) Hard and soft landscape treatment (e.g. trees and shrubs) of open areas within development to provide a background for the outdoor containers from open view, shade and shelter, and a green appearance from surrounding viewpoints.									
	4) Planting strip along the periphery of the project site.									
	5) Selected tree species suitable for the coastal condition.									

	Environmental Protection		Implementation	Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MLVC-03	Adoption of Natural Features of the Existing Shoreline 1) Use of boulders in different sizes and with the similar textures of the existing rocky shores for the construction of breakwater and artificial shoreline in order to blend into the existing natural shoreline. 2) Use of cellular cofferdam together with the natural boulders to form a curvature shoreline for the reclamation area to echo with the natural shoreline of SKC.	Work site / During construction phase	Contractor		✓				N/A
S10b.10 MLVC-04	Greening Design (Rooftop & Vertical Greening) 1) Implementation of rooftop and vertical greening (vertical building envelope) along the periphery of each building block to increase the amenity value of the work, moderate temperature extremes and enhance building energy performance. The greening appearance of the building shall enhance its visual harmony with the natural surroundings as well as reduce the apparent visual mass of the structure.		Contractor	V	✓				N/A
	 Sufficient space between concrete enclosure and stack to minimize heat transfer. 								
	3) Introduction of landscape decks at the stack to further enhance the overall natural and green concept unique for this site.								

	Environmental Protection		Implementation	Imple	ement	ation	Stages*	Relevant	Implementation	
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks	
S10b.10 MVC-01	Visual Mitigation and Aesthetic Design	Structures in IWMF /	Contractor	✓	✓				N/A	
WVC-01	Use of natural materials with recessive color to minimize the bulkiness of the building.	During design & constructio								
	Adoption of innovative aesthetic design to the chimney to minimize or visually mitigate the massing of the chimney so as to reduce its visual impact to the surroundings.	n phases								
	 Color of the chimney in a gradual changing manner to match with the color of the sky. 									
	 Provision of observation deck for public enjoyment at the top of the chimney to diminish the feeling of chimney. 									
	5) Provision of sky gardens between the two stacks to allow additional greening for enhancing the aesthetic quality. Maintenance access (elevator and staircase) from the ground floor to the sky gardens will be provided to allow maintenance of the sky gardens.									
	Integration of the visitor's walkway with different material façade design of incinerator plant to enhance the aesthetic quality.									
S10b.10 MVC-02	Control of the security floodlight for construction areas at night to avoid excessive glare to the surrounding receiver.	Work site / During construction phase	Contractor		✓				Implemented	

	Environmental Protection		Implementation	Imple	ment	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MVC-03	Optimization of the construction sequence and construction programme to minimize the duration of impact.	Work site / During design & construction phases	Contractor	*	√				Implemented
S10b.10 MVC-04	Storage of the backfilling materials for site formation & construction materials / wastes on site at a maximum height of 2m, covered with an impermeable material of visually un-obtrusive material (in earth tone).	Work site / During construction phase	Contractor		√				N/A
S10b.10 MVC-05	Reduction of the number of construction traffic at the site to practical minimum.	Work site / During construction phase	Contractor		√				Implemented
S10b.10 MLVO-01	Planting Maintenance Provision of proper planting maintenance and replacement of defective plant species on the new planting areas to enhance aesthetic and landscape quality.		Contractor			✓			N/A
S10b.10 MVO-01	Environmental Education Centre Development of an Environmental Education Center, in which regular exhibitions and lectures to promote environmental awareness and waste reduction concept would be provided, as a part of the IWMF for the general public to alleviate negative public perceptions of the development.	Project site / During Operation phase	Contractor			✓			N/A
S10b.10 MVO-02	Control of Light Control the numbers of lights and their intensity to a level that is good enough to meet the safety requirements at night but not excessive.	Project site / During Operation phase	Contractor			√			N/A

Integrated Waste Management Facilities, Phase 1

S10b.10	Environmental Protection	1 4: /	Implementation	Imple	ement	ation	Stages*	Relevant	Implementation
	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MVO-03	Control of Operation Time Minimization of the frequency of waste transportation to practical minimum (e.g. limit the reception of MSW from 8 am to 8 pm)	Project site / During Operation phase	Contractor			√			N/A

^{*} Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Contract No. EP/SP/66 Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix C	Impact Monitoring Schedul	e of the Reporting
	Month	

			Impact Monitoring Schedule for IWMF			
			Feb-19			
Sun	Mon	Tue	Wed	Thu	Fri Sat	
					1 2	
					Impact Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1, CR2, M1,	
					\$1, \$2 & \$3	
					Tidal Period:	
					Ebb Tide: 09:14 - 12:10	
					Flood Tide: 12:10 - 19:11	
					Monitoring Time:	
					\$# Mid-ebb: 09:22 - 12:01 Mid-flood: 13:55 - 17:25	
					Mid 100d. 13.33 17.13	
3	4	5	6	7	8 9	
	Impact				Impact	
	Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1, CR2, M1,				Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1, CR2, M1,	
	S1, S2 & S3 Tidal Period:				S1, S2 & S3 Tidal Period:	
	Ebb Tide: 10:50 - 14:31				Ebb Tide: 12:02 - 17:06	
	Flood Tide: 14:31 - 20:52				Flood Tide: 05:39 - 12:02	
	Monitoring Time:				Monitoring Time:	
	Mid-ebb: 10:55 - 14:25				Mid-ebb: 12:49 - 16:19	
	& Mid-flood: 14:50 - 19:00				* Mid-flood: 08:00 - 10:35	
	Daytime Noise monitoring for M1, M2 & M3					
10	11	12	12	14	15 16	
	Impact	Impact	Impact	Impact	Impact	Impact
	Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, M1, CR1 & CR2				Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, M1, CR1 & CR2 In	
	Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10	Tidal Period:	Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10		Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10	Tidal Period:
	Tidal Period:	Ebb Tide: 14:49 - 20:57	Tidal Period:	Ebb Tide: 16:34 - 23:48	Tidal Period:	Ebb Tide: 08:13 - 10:56
	Ebb Tide: 13:48 - 19:27	Flood Tide: 07:26 - 14:49	Ebb Tide: 15:45 - 22:24 Flood Tide: 07:55 - 15:45	Flood Tide: 08:31 - 16:34	Ebb Tide: 06:41 - 09:26	Flood Tide: 10:56 - 18:16
	Flood Tide: 06:59 - 13:48 Monitoring Time:	Monitoring Time: & Mid-ebb: 15:07 - 19:00	Monitoring Time:	Monitoring Time: & Mid-ebb: 16:55 - 19:00	Flood Tide: 09:25 - 17:23 Monitoring Time:	Monitoring Time: \$ Mid-ebb: 08:21 - 10:47
	Mid-ebb: 14:52 - 18:22	Mid-flood: 09:22 - 12:52	& Mid-ebb: 16:04 - 19:00	Mid-flood: 10:47 - 14:17	\$# Mid-ebb: 08:00 - 09:17	Mid-flood: 12:51 - 16:21
	Mid-flood: 08:38 - 12:08	Ecology monitoring for Marine Mammals by Vessel-based Line-Transect	Mid-flood: 10:05 - 13:35		Mid-flood: 11:39 - 15:09	Ecology monitoring for WBSE
	Daytime Noise monitoring for M1, M2 & M3	Survey				
17	18	19	20	21	22 23	
Impact	Impact Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, M1, CR1 & CR2	Impact	Impact	Impact	Impact Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, M1, CR1 & CR2 In	Impact
Tidal Period:	Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10	Tidal Period:	Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10	Tidal Period:	Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10	Tidal Period:
Ebb Tide: 09:25 - 12:23	Tidal Period:	Ebb Tide: 10:21 - 14:35	Tidal Period:	Ebb Tide: 11:24-16:15	Tidal Period:	Ebb Tide: 12:22 - 17:51
Flood Tide: 12:23 - 19:15	Ebb Tide: 09:45 - 13:36	Flood Tide: 14:35 - 21:09	Ebb Tide: 10:54 - 15:27	Flood Tide: 04:46 - 11:24	Ebb Tide: 11:52 - 17:02	Flood Tide: 05:58 - 12:22
Monitoring Time:	Flood Tide: 13:36 - 20:14	Monitoring Time:	Flood Tode: 15:27 - 22:02	Monitoring Time:	Flood Tide: 05:22 - 11:52	Monitoring Time:
Mid-ebb: 09:09 - 12:39	Monitoring Time:	Mid-ebb: 10:43 - 14:13	Monitoring Time:	& Mid-ebb: 12:04 - 15:34	Monitoring Time:	Mid-ebb: 13:21 - 16:51
Mid-flood: 14:04 - 17:34	Mid-ebb: 09:55 - 13:25	& Mid-flood: 14:54 -19:00	Mid-ebb: 11:25 - 14:55	* Mid-flood: 08:00 - 09:50	Mid-ebb: 12:42 - 16:12	* Mid-flood: 08:00 - 10:55
	Mid-flood: 15:10 - 18:40 Daytime Noise monitoring for M1, M2 & M3	% Ecology monitoring for Land-based Theodolite Tracking	& Mid-flood: 15:46 - 19:00 % Ecology monitoring for Land-based Theodolite Tracking	Ecology monitoring for Land-based Theodolite Tracking	* Mid-flood: 08:00 - 10:22 Ecology monitoring for Land-based Theodolite Tracking	
	% Ecology monitoring for Land-based Theodolite Tracking		26 Ecology Monitoring for Land-based Meodolite Macking		Ecology monitoring for cana-based meodolite fracking	
24	25	26	27	28		
Impact	Impact	Impact	Impact	Impact		
		Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 &				
Tidal Period:	Tidal Period:	110	Tidal Period:	110		
Ebb Tide: 12:54 - 18:43	Ebb Tide: 13:32 - 19:50	Tidal Period:	Ebb Tide: 15:35 - 23:53	Tidal Period:		
Flood Tide: 06:31 - 12:54	Flood Tide: 07:04 - 13:32	Ebb Tide: 14:21 - 21:36 Flood Tide: 07:35 - 14:21	Flood Tode: 08:06 - 15:35	Ebb Tide: 16:52 - 23:00 Flood Tide: 09:00 - 16:52		
Monitoring Time: Mid-ebb: 14:03 - 17:33	Monitoring Time: Mid-ebb: 14:56 - 18:26	Monitoring Time:	Monitoring Time: & Mid-ebb: 15:59 - 19:00	Monitoring Time:		
Mid-flood: 08:00 - 11:27	Mid-flood: 08:33 - 12:03	& Mid-ebb: 16:13 - 19:00	Mid-flood: 10:05 - 13:35	& Mid-ebb: 17:10 -19:00		
	Daytime Noise monitoring for M1, M2 & M3	Mid-flood: 09:13 - 12:43	Ecology monitoring for WBSE	Mid-flood: 11:11 - 14:41		
	% Ecology monitoring for Marine Mammals by Vessel-based Line-Transect	^ Ecology monitoring for Marine Mammals by Vessel-based Line-Transect	% Ecology monitoring for Land-based Theodolite Tracking	Ecology monitoring for Land-based Theodolite Tracking		
	Survey	Survey				
Demarks:						

Remarks:

1. Dayfirm Noise Monitoring (07:00-1900), Evening Time Noise Monitoring (1900-2300), Night Time Noise Monitoring (2300-0700)

2. Water Quality Monitoring for \$1,52 and \$3 will only conduct during Regular DCM Monitoring, refer to Detailed DCM Plan

3. 5, 6.8.7 Fibruary 2019 are Chinese Lunar New Year Holldays.

Note:

*- as per Marine Department Notice No 107 of 2018, all vessels employed for the works should stary in the works area outside the hours of works (0700 to 2300). Due to safty concern, Water Quality Monitoring would start at 0800. a - Prioritized routing, Mile-Ebb: C1-953-PCR2-94C19-H1-9Remaining stations and Mile-Tood: C2-9CR1-953-PCR2-9H1-9Remaining stations
5 - Since predicted tide is shorter than 3.5 hours, method of 50% tidal period as monitoring time is approached.
5 - Due to safty-concern for samping event in ingli-time, mechanic of 95% tidal period as monitoring time is approached and end at 1900.

8 - Time exceedance is recorded within the first two vesks (11/2-24/2), then the monitoring frequency will be reduced to every two dyss.
5 - Cancelled due to incident or unfavorable weather condition

- rescheduled due to incident or unfavorable weather condition

Contract No. EP/SP/66 Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix D	Water Quality Monito	oring Data

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190201	Cloudy	Light	Mid-Ebb	В	10.8	9:57	12.05	8.31	30.58	20.7	3.9	3	112	0.39	Е
C1	20190201	Cloudy	Light	Mid-Ebb	В	10.8	9:57	12.1	8.32	30.58	20.8	3.96	3	112	0.38	Е
C1	20190201	Cloudy	Light	Mid-Ebb	M	5.9	9:58	12.03	8.5	29.53	20.8	3.31	4	113	0.22	Е
C1	20190201	Cloudy	Light	Mid-Ebb	M	5.9	9:59	12.06	8.41	30.59	20.6	3.66	3	112	0.24	Е
C1	20190201	Cloudy	Light	Mid-Ebb	S	1	9:59	12.04	8.23	29.89	20.7	3.27	5	112	0.17	Е
C1	20190201	Cloudy	Light	Mid-Ebb	S	1	10:00	11.98	8.39	30.55	20.7	3.23	4	112	0.17	E
B1	20190201	Cloudy	Light	Mid-Ebb	В	4.5	10:14	11.33	8.29	30.13	20.7	3.89	6	113	0.31	NE
B1	20190201	Cloudy	Light	Mid-Ebb	В	4.5	10:15	11.23	8.19	29.69	20.6	3.85	6	112	0.31	NE
B1	20190201	Cloudy	Light	Mid-Ebb	S	1	10:15	11.3	8.24	29.87	20.8	3.3	4	112	0.11	NE
B1	20190201	Cloudy	Light	Mid-Ebb	S	1	10:16	11.34	8.22	29.93	20.6	3.3	4	112	0.11	NE
S1	20190201	Cloudy	Light	Mid-Ebb	В	4.6	10:28	10.51	8.46	30.51	20.8	3.79	4	112	0.36	Е
S1	20190201	Cloudy	Light	Mid-Ebb	В	4.6	10:28	10.44	8.39	29.71	20.8	3.86	3	112	0.38	Е
S1	20190201	Cloudy	Light	Mid-Ebb	S	1	10:29	10.38	8.27	29.83	20.8	3.29	4	113	0.13	Е
S1	20190201	Cloudy	Light	Mid-Ebb	S	1	10:30	10.3	8.38	30.35	20.8	3.09	3	113	0.15	Е
S2	20190201	Cloudy	Light	Mid-Ebb	В	8.4	10:35	10.41	8.12	30.29	20.8	3.79	3	113	0.39	SE
S2	20190201	Cloudy	Light	Mid-Ebb	В	8.4	10:35	10.39	8.39	30.3	20.7	3.99	4	112	0.39	SE
S2	20190201	Cloudy	Light	Mid-Ebb	M	4.7	10:36	10.37	8.05	30.96	20.6	3.44	3	112	0.23	SE
S2	20190201	Cloudy	Light	Mid-Ebb	M	4.7	10:37	10.37	8.33	30.68	20.7	3.5	3	112	0.23	SE
S2	20190201	Cloudy	Light	Mid-Ebb	S	1	10:37	10.36	8.08	29.73	20.7	3.06	3	112	0.12	SE
S2	20190201	Cloudy	Light	Mid-Ebb	S	1	10:38	10.45	8.37	29.98	20.7	3.03	4	112	0.11	SE
B2	20190201	Cloudy	Light	Mid-Ebb	В	4.5	10:44	11.21	8.2	29.54	20.8	3.99	5	112	0.39	SE
B2	20190201	Cloudy	Light	Mid-Ebb	В	4.5	10:45	11.16	8.49	29.53	20.7	3.75	4	110	0.37	SE
B2	20190201	Cloudy	Light	Mid-Ebb	S	1	10:45	11.2	8.12	29.65	20.6	3.18	5	112	0.14	SE
B2	20190201	Cloudy	Light	Mid-Ebb	S	1	10:46	11.12	8.07	29.73	20.8	3.04	4	113	0.13	SE
H1	20190201	Cloudy	Light	Mid-Ebb	В	8.6	10:53	12.04	8.45	30.64	20.8	3.74	7	112	0.4	Е
H1	20190201	Cloudy	Light	Mid-Ebb	В	8.6	10:53	12.13	8.16	29.95	20.6	3.74	6	112	0.38	Е
H1	20190201	Cloudy	Light	Mid-Ebb	M	4.8	10:54	12.19	8.49	30.42	20.6	3.62	9	112	0.26	Е
H1	20190201	Cloudy	Light	Mid-Ebb	M	4.8	10:55	12.26	8.41	30.14	20.6	3.32	9	112	0.27	Е
H1	20190201	Cloudy	Light	Mid-Ebb	S	1	10:56	12.28	8.14	30.73	20.6	3.07	5	112	0.13	Е
H1	20190201	Cloudy	Light	Mid-Ebb	S	1	10:56	12.32	8.34	30.41	20.6	3.23	4	112	0.15	Е
В3	20190201	Cloudy	Light	Mid-Ebb	В	4.4	11:09	10.01	8.46	30.35	20.7	3.99	5	111	0.36	Е
В3	20190201	Cloudy	Light	Mid-Ebb	В	4.4	11:10	9.96	8.16	29.94	20.7	3.92	6	112	0.35	Е

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
В3	20190201	Cloudy	Light	Mid-Ebb	S	1	11:10	9.89	8.14	30.65	20.7	3.26	4	111	0.13	Е
В3	20190201	Cloudy	Light	Mid-Ebb	S	1	11:11	9.83	8.18	30.78	20.6	3.17	5	112	0.14	E
S 3	20190201	Cloudy	Light	Mid-Ebb	В	11.2	11:06	11.48	8.12	30.16	20.8	3.9	3	112	0.38	SE
S 3	20190201	Cloudy	Light	Mid-Ebb	В	11.2	11:07	11.54	8.41	30.18	20.6	3.73	4	112	0.4	SE
S 3	20190201	Cloudy	Light	Mid-Ebb	M	6.1	11:07	11.53	8.14	30.18	20.8	3.69	4	112	0.25	SE
S 3	20190201	Cloudy	Light	Mid-Ebb	M	6.1	11:08	11.53	8.34	30.01	20.6	3.58	4	113	0.23	SE
S3	20190201	Cloudy	Light	Mid-Ebb	S	1	11:09	11.48	8.38	29.97	20.8	3.28	4	112	0.15	SE
S3	20190201	Cloudy	Light	Mid-Ebb	S	1	11:09	11.5	8.34	30.41	20.8	3.03	4	113	0.15	SE
CR2	20190201	Cloudy	Light	Mid-Ebb	В	9.5	11:15	10.4	8.16	30.23	20.6	3.94	3	112	0.36	SE
CR2	20190201	Cloudy	Light	Mid-Ebb	В	9.5	11:16	10.39	8.42	29.86	20.6	3.81	4	112	0.36	SE
CR2	20190201	Cloudy	Light	Mid-Ebb	M	5.3	11:17	10.41	8.14	30.76	20.8	3.3	3	113	0.2	SE
CR2	20190201	Cloudy	Light	Mid-Ebb	M	5.3	11:17	10.48	8.18	29.72	20.7	3.3	3	112	0.19	SE
CR2	20190201	Cloudy	Light	Mid-Ebb	S	1	11:18	10.57	8.04	30.47	20.7	3.01	4	112	0.15	SE
CR2	20190201	Cloudy	Light	Mid-Ebb	S	1	11:19	10.6	8.23	30.02	20.8	3.1	4	112	0.16	SE
CR1	20190201	Cloudy	Light	Mid-Ebb	В	8.9	11:28	10.35	8.07	29.73	20.8	3.75	3	112	0.32	SE
CR1	20190201	Cloudy	Light	Mid-Ebb	В	8.9	11:29	10.36	8.39	29.84	20.6	3.88	3	113	0.3	SE
CR1	20190201	Cloudy	Light	Mid-Ebb	M	5	11:30	10.41	8.37	29.55	20.8	3.57	4	113	0.2	SE
CR1	20190201	Cloudy	Light	Mid-Ebb	M	5	11:31	10.48	8.47	30.84	20.7	3.33	4	112	0.21	SE
CR1	20190201	Cloudy	Light	Mid-Ebb	S	1	11:31	10.43	8.26	30.81	20.7	3.13	5	112	0.14	SE
CR1	20190201	Cloudy	Light	Mid-Ebb	S	1	11:32	10.34	8.02	30.61	20.7	3	5	111	0.12	SE
B4	20190201	Cloudy	Light	Mid-Ebb	В	4.5	11:30	11.04	8.47	30.35	20.8	3.75	5	113	0.4	SE
B4	20190201	Cloudy	Light	Mid-Ebb	В	4.5	11:30	11.08	8.5	29.58	20.7	3.7	4	112	0.41	SE
B4	20190201	Cloudy	Light	Mid-Ebb	S	1	11:31	11.1	8.29	29.67	20.7	3.17	9	112	0.2	SE
B4	20190201	Cloudy	Light	Mid-Ebb	S	1	11:32	11.07	8.08	30.13	20.8	3.18	9	112	0.19	SE
M1	20190201	Cloudy	Light	Mid-Ebb	В	8	12:08	10.49	8.3	29.98	20.8	3.92	3	112	0.35	NE
M1	20190201	Cloudy	Light	Mid-Ebb	В	8	12:08	10.5	8.34	29.77	20.8	3.76	4	112	0.34	NE
M1	20190201	Cloudy	Light	Mid-Ebb	M	4.5	12:09	10.53	8.22	30.82	20.6	3.3	3	112	0.26	NE
M1	20190201	Cloudy	Light	Mid-Ebb	M	4.5	12:10	10.53	8.39	30.26	20.6	3.69	4	111	0.27	NE
M1	20190201	Cloudy	Light	Mid-Ebb	S	1	12:11	10.52	8.27	30.53	20.8	3.17	3	112	0.13	NE
M1	20190201	Cloudy	Light	Mid-Ebb	S	1	12:11	10.43	8.17	30.64	20.7	3.12	3	111	0.15	NE
F1	20190201	Cloudy	Light	Mid-Ebb	В	8.1	12:16	10.19	8.29	30.86	20.7	3.92	4	112	0.39	SE
F1	20190201	Cloudy	Light	Mid-Ebb	В	8.1	12:17	10.27	8.08	30.79	20.7	3.89	4	112	0.37	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190201	Cloudy	Light	Mid-Ebb	M	4.6	12:17	10.18	8.3	30.19	20.6	3.54	4	112	0.26	SE
F1	20190201	Cloudy	Light	Mid-Ebb	M	4.6	12:18	10.13	8.44	30.07	20.7	3.34	4	113	0.27	SE
F1	20190201	Cloudy	Light	Mid-Ebb	S	1	12:19	10.09	8.05	29.7	20.8	3.28	7	112	0.12	SE
F1	20190201	Cloudy	Light	Mid-Ebb	S	1	12:20	10.02	8.41	30.02	20.7	3.07	6	113	0.14	SE
C2	20190201	Cloudy	Light	Mid-Ebb	В	7.8	12:35	11.23	8.06	30.92	20.6	3.98	3	112	0.38	S
C2	20190201	Cloudy	Light	Mid-Ebb	В	7.8	12:36	11.21	8.35	30.43	20.7	3.8	3	112	0.37	S
C2	20190201	Cloudy	Light	Mid-Ebb	M	4.4	12:37	11.17	8.45	30.97	20.6	3.68	4	112	0.27	S
C2	20190201	Cloudy	Light	Mid-Ebb	M	4.4	12:37	11.08	8.18	30.63	20.8	3.48	3	112	0.25	S
C2	20190201	Cloudy	Light	Mid-Ebb	S	1	12:38	11.08	8.06	29.7	20.6	3.06	4	112	0.13	S
C2	20190201	Cloudy	Light	Mid-Ebb	S	1	12:39	11.09	8.05	29.8	20.7	3.19	4	111	0.15	S
C2	20190201	Fine	Calm	Mid-Flood	В	8.3	14:00	12.02	8.04	30.74	20.8	3.92	8	111	0.33	N
C2	20190201	Fine	Calm	Mid-Flood	В	8.3	14:00	11.96	8.3	30.2	20.7	3.74	8	112	0.33	N
C2	20190201	Fine	Calm	Mid-Flood	M	4.7	14:01	11.91	8.09	30.47	20.6	3.45	4	111	0.23	N
C2	20190201	Fine	Calm	Mid-Flood	M	4.7	14:02	11.99	8.47	29.52	20.6	3.34	5	112	0.23	N
C2	20190201	Fine	Calm	Mid-Flood	S	1	14:02	12.09	8.12	29.86	20.7	3.06	4	110	0.13	N
C2	20190201	Fine	Calm	Mid-Flood	S	1	14:03	12.1	8.06	30.35	20.6	3.07	5	111	0.14	N
CR1	20190201	Fine	Calm	Mid-Flood	В	9.1	14:02	11.05	8.44	30.77	20.6	3.84	3	111	0.35	NW
CR1	20190201	Fine	Calm	Mid-Flood	В	9.1	14:03	11.15	8.37	30.04	20.7	3.71	4	111	0.36	NW
CR1	20190201	Fine	Calm	Mid-Flood	M	5.1	14:03	11.11	8.4	30.94	20.6	3.32	3	113	0.3	NW
CR1	20190201	Fine	Calm	Mid-Flood	M	5.1	14:04	11.11	8.15	30.6	20.6	3.3	4	112	0.3	NW
CR1	20190201	Fine	Calm	Mid-Flood	S	1	14:05	11.01	8.24	30.34	20.6	3.16	2	111	0.12	NW
CR1	20190201	Fine	Calm	Mid-Flood	S	1	14:05	11.07	8.25	30.12	20.7	3.08	4	112	0.12	NW
CR2	20190201	Fine	Calm	Mid-Flood	В	10.1	14:17	9.96	8.26	30.7	20.8	3.75	6	112	0.32	NW
CR2	20190201	Fine	Calm	Mid-Flood	В	10.1	14:18	9.92	8.46	29.73	20.6	3.78	6	113	0.33	NW
CR2	20190201	Fine	Calm	Mid-Flood	M	5.6	14:19	9.98	8.3	29.69	20.6	3.45	4	112	0.26	NW
CR2	20190201	Fine	Calm	Mid-Flood	M	5.6	14:19	9.88	8.36	30.27	20.6	3.59	4	112	0.28	NW
CR2	20190201	Fine	Calm	Mid-Flood	S	1	14:20	9.98	8	30.24	20.8	3.28	4	112	0.14	NW
CR2	20190201	Fine	Calm	Mid-Flood	S	1	14:21	9.9	8.32	29.56	20.7	3.22	3	112	0.15	NW
S3	20190201	Fine	Calm	Mid-Flood	В	11.4	14:28	10.06	8.14	30.66	20.8	3.79	2	111	0.38	NW
S3	20190201	Fine	Calm	Mid-Flood	В	11.4	14:29	10.01	8.03	30.69	20.7	3.9	<2	112	0.4	NW
S3	20190201	Fine	Calm	Mid-Flood	M	6.2	14:30	10.09	8.31	29.9	20.7	3.64	4	112	0.2	NW
S3	20190201	Fine	Calm	Mid-Flood	M	6.2	14:31	10.06	8.05	30.91	20.8	3.41	3	111	0.22	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S3	20190201	Fine	Calm	Mid-Flood	S	1	14:31	10.08	8.03	30.86	20.8	3.15	3	110	0.2	NW
S3	20190201	Fine	Calm	Mid-Flood	S	1	14:32	9.99	8.12	30.97	20.6	3.24	4	111	0.21	NW
F1	20190201	Fine	Calm	Mid-Flood	В	8.5	14:27	10.53	8.18	30.01	20.6	3.89	6	112	0.4	NW
F1	20190201	Fine	Calm	Mid-Flood	В	8.5	14:27	10.45	8.41	30.5	20.6	3.95	6	112	0.41	NW
F1	20190201	Fine	Calm	Mid-Flood	M	4.8	14:28	10.44	8.4	30.12	20.7	3.64	5	111	0.21	NW
F1	20190201	Fine	Calm	Mid-Flood	M	4.8	14:29	10.46	8.46	30.07	20.6	3.69	6	111	0.21	NW
F1	20190201	Fine	Calm	Mid-Flood	S	1	14:30	10.47	8.24	30.65	20.7	3.14	5	111	0.15	NW
F1	20190201	Fine	Calm	Mid-Flood	S	1	14:30	10.53	8.31	30.03	20.7	3.22	6	112	0.16	NW
C1	20190201	Fine	Calm	Mid-Flood	В	11.4	14:55	10.71	8	29.64	20.8	3.96	5	112	0.38	NW
C1	20190201	Fine	Calm	Mid-Flood	В	11.4	14:56	10.81	8.42	29.74	20.7	3.96	4	111	0.38	NW
C1	20190201	Fine	Calm	Mid-Flood	M	6.2	14:56	10.73	8.34	30.51	20.7	3.57	4	112	0.25	NW
C1	20190201	Fine	Calm	Mid-Flood	M	6.2	14:57	10.74	8.24	29.63	20.8	3.54	3	110	0.24	NW
C1	20190201	Fine	Calm	Mid-Flood	S	1	14:58	10.66	8.15	29.61	20.6	3.22	4	111	0.11	NW
C1	20190201	Fine	Calm	Mid-Flood	S	1	14:59	10.7	8.17	29.58	20.6	3.26	12	110	0.09	NW
M1	20190201	Fine	Calm	Mid-Flood	В	8.3	14:58	12.03	8.26	30.32	20.8	3.99	6	112	0.31	NW
M1	20190201	Fine	Calm	Mid-Flood	В	8.3	14:59	11.98	8	29.7	20.6	3.87	6	113	0.31	NW
M1	20190201	Fine	Calm	Mid-Flood	M	4.7	15:00	11.96	8.09	30.62	20.6	3.35	10	113	0.27	NW
M1	20190201	Fine	Calm	Mid-Flood	M	4.7	15:00	12	8.49	30.01	20.8	3.61	9	112	0.28	NW
M1	20190201	Fine	Calm	Mid-Flood	S	1	15:01	11.97	8.43	30.11	20.8	3.03	14	111	0.12	NW
M1	20190201	Fine	Calm	Mid-Flood	S	1	15:02	11.87	8.5	29.67	20.8	3.06	15	111	0.14	NW
B1	20190201	Fine	Calm	Mid-Flood	В	4.7	15:16	11.99	8.37	29.8	20.8	3.91	4	112	0.36	NW
B1	20190201	Fine	Calm	Mid-Flood	В	4.7	15:16	12.08	8.13	30.43	20.7	3.79	3	110	0.34	NW
B1	20190201	Fine	Calm	Mid-Flood	S	1	15:17	12.04	8.5	29.91	20.7	3.29	4	112	0.15	NW
B1	20190201	Fine	Calm	Mid-Flood	S	1	15:18	12.07	8.36	30.4	20.8	3.22	3	112	0.14	NW
S1	20190201	Fine	Calm	Mid-Flood	В	4.7	15:25	10.22	8.3	30.31	20.8	3.85	5	112	0.36	NW
S1	20190201	Fine	Calm	Mid-Flood	В	4.7	15:25	10.23	8.28	29.91	20.6	3.86	5	113	0.35	NW
S1	20190201	Fine	Calm	Mid-Flood	S	1	15:26	10.15	8.07	29.79	20.6	3.09	4	111	0.16	NW
S1	20190201	Fine	Calm	Mid-Flood	S	1	15:27	10.06	8.28	30.93	20.8	3.03	4	111	0.15	NW
B2	20190201	Fine	Calm	Mid-Flood	В	4.8	15:36	10.85	8.12	30.57	20.8	3.86	3	111	0.39	N
B2	20190201	Fine	Calm	Mid-Flood	В	4.8	15:37	10.91	8.17	29.55	20.7	3.75	4	112	0.41	N
B2	20190201	Fine	Calm	Mid-Flood	S	1	15:38	10.87	8.47	31	20.6	3.03	<2	112	0.1	N
B2	20190201	Fine	Calm	Mid-Flood	S	1	15:39	10.86	8.28	30.76	20.7	3.28	<2	111	0.1	N

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190201	Fine	Calm	Mid-Flood	В	8.9	15:41	10.64	8.06	30.72	20.6	3.76	4	111	0.37	W
H1	20190201	Fine	Calm	Mid-Flood	В	8.9	15:42	10.62	8.41	30.84	20.8	3.78	4	110	0.37	W
H1	20190201	Fine	Calm	Mid-Flood	M	5	15:43	10.59	8.04	30.77	20.6	3.67	4	111	0.27	W
H1	20190201	Fine	Calm	Mid-Flood	M	5	15:43	10.49	8.5	30.3	20.6	3.52	5	110	0.26	W
H1	20190201	Fine	Calm	Mid-Flood	S	1	15:44	10.44	8.09	30.22	20.6	3.04	6	113	0.17	W
H1	20190201	Fine	Calm	Mid-Flood	S	1	15:45	10.54	8.32	30.72	20.8	3.26	5	112	0.17	W
S2	20190201	Fine	Calm	Mid-Flood	В	8.7	15:46	11.55	8.17	30.21	20.7	3.86	3	111	0.3	W
S2	20190201	Fine	Calm	Mid-Flood	В	8.7	15:46	11.55	8.42	30.77	20.8	3.8	3	111	0.32	W
S2	20190201	Fine	Calm	Mid-Flood	M	4.9	15:47	11.52	8.38	30.19	20.7	3.42	4	112	0.22	W
S2	20190201	Fine	Calm	Mid-Flood	M	4.9	15:48	11.43	8.29	30.95	20.6	3.49	4	111	0.2	W
S2	20190201	Fine	Calm	Mid-Flood	S	1	15:48	11.45	8.18	30.95	20.7	3.1	4	113	0.17	W
S2	20190201	Fine	Calm	Mid-Flood	S	1	15:49	11.39	8.06	30.51	20.7	3.01	4	111	0.16	W
В3	20190201	Fine	Calm	Mid-Flood	В	4.7	15:53	10.84	8	29.65	20.6	3.92	5	111	0.32	W
В3	20190201	Fine	Calm	Mid-Flood	В	4.7	15:54	10.9	8.22	29.53	20.8	3.75	5	113	0.33	W
В3	20190201	Fine	Calm	Mid-Flood	S	1	15:54	10.83	8.29	30.75	20.7	3.14	7	112	0.18	W
В3	20190201	Fine	Calm	Mid-Flood	S	1	15:55	10.74	8.05	29.86	20.6	3.18	6	112	0.17	W
B4	20190201	Fine	Calm	Mid-Flood	В	4.8	16:04	10.03	8.19	29.91	20.7	3.99	6	111	0.34	NW
B4	20190201	Fine	Calm	Mid-Flood	В	4.8	16:04	9.97	8.07	30.07	20.8	3.86	6	111	0.32	NW
B4	20190201	Fine	Calm	Mid-Flood	S	1	16:05	9.94	8.26	29.77	20.8	3.04	4	112	0.17	NW
B4	20190201	Fine	Calm	Mid-Flood	S	1	16:06	10.03	8.38	30.07	20.6	3.18	5	112	0.17	NW
C1	20190204	Sunny	Light	Mid-Ebb	В	10.8	11:59	12	8.47	31.24	22.5	3.89	4	113	0.39	SE
C1	20190204	Sunny	Light	Mid-Ebb	В	10.8	11:59	12	8.21	31.73	22.7	3.91	4	113	0.4	SE
C1	20190204	Sunny	Light	Mid-Ebb	M	5.9	12:00	12.15	8.1	31.66	22.5	3.52	3	113	0.21	SE
C1	20190204	Sunny	Light	Mid-Ebb	M	5.9	12:01	12.04	8.48	30.7	22.6	3.68	3	112	0.19	SE
C1	20190204	Sunny	Light	Mid-Ebb	S	1	12:01	11.94	8.41	31.34	22.5	3.3	4	112	0.17	SE
C1	20190204	Sunny	Light	Mid-Ebb	S	1	12:02	12.03	8.27	30.83	22.7	3.23	3	112	0.15	SE
F1	20190204	Sunny	Light	Mid-Ebb	В	7.8	12:05	10.1	8.22	30.61	22.5	3.82	5	113	0.32	SE
F1	20190204	Sunny	Light	Mid-Ebb	В	7.8	12:06	10.11	8.09	31.41	22.5	3.96	6	113	0.32	SE
F1	20190204	Sunny	Light	Mid-Ebb	M	4.4	12:06	9.96	8.22	31.55	22.7	3.42	4	112	0.28	SE
F1	20190204	Sunny	Light	Mid-Ebb	M	4.4	12:07	10.03	8.32	31.61	22.6	3.56	4	113	0.28	SE
F1	20190204	Sunny	Light	Mid-Ebb	S	1	12:08	9.85	8.47	31.02	22.5	3.23	3	112	0.19	SE
F1	20190204	Sunny	Light	Mid-Ebb	S	1	12:08	9.78	8.48	30.8	22.5	3.09	2	112	0.2	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth	Time	DO (mg/L)	рН	Sal (ppt)	Temp	Turbidity	SS (mg/L)	Total Alkalinity	Current	Direction in NESW
B1	20190204	C		Mid-Ebb	1 B	(m) 4.4	12.20	(mg/L) 10.52	8.08	30.91	(°C)	(NTU) Note 3	(mg/L)	(mg/L)	Velocity 0.38	
		Sunny	Light				12:20					3.76				NE
B1	20190204	Sunny	Light	Mid-Ebb	В	4.4	12:21	10.62	8.19	31.71	22.7	3.94	6	112	0.37	NE
B1	20190204	Sunny	Light	Mid-Ebb	S	1	12:22	10.8	8.11	31.71	22.5	3.08	5	112	0.2	NE
B1	20190204	Sunny	Light	Mid-Ebb	S	1	12:22	10.99	8.02	30.12	22.5	3.11	5	112	0.22	NE
S1	20190204	Sunny	Light	Mid-Ebb	В	4.3	12:27	11.46	8.22	31.79	22.6	3.7	4	113	0.3	Е
S1	20190204	Sunny	Light	Mid-Ebb	В	4.3	12:28	11.4	8.11	31.26	22.6	3.79	4	112	0.29	Е
S1	20190204	Sunny	Light	Mid-Ebb	S	1	12:28	11.53	8.11	31.25	22.7	3.1	5	112	0.15	Е
S1	20190204	Sunny	Light	Mid-Ebb	S	1	12:29	11.58	8.23	31.02	22.5	3.08	6	112	0.17	Е
B2	20190204	Sunny	Light	Mid-Ebb	В	4.4	12:34	11.45	8.2	31.76	22.6	3.79	4	112	0.34	SE
B2	20190204	Sunny	Light	Mid-Ebb	В	4.4	12:35	11.5	8.13	31.51	22.6	4	5	113	0.33	SE
B2	20190204	Sunny	Light	Mid-Ebb	S	1	12:35	11.39	8.16	31.04	22.6	3.22	5	113	0.1	SE
B2	20190204	Sunny	Light	Mid-Ebb	S	1	12:36	11.58	8.35	31.48	22.5	3.02	4	112	0.1	SE
M1	20190204	Sunny	Light	Mid-Ebb	В	8.3	12:36	12.3	8.11	31.32	22.5	3.96	11	113	0.36	NW
M1	20190204	Sunny	Light	Mid-Ebb	В	8.3	12:36	12.28	8.23	30.17	22.6	3.84	10	112	0.37	NW
M1	20190204	Sunny	Light	Mid-Ebb	M	4.7	12:37	12.09	8.22	30.61	22.7	3.55	9	112	0.3	NW
M1	20190204	Sunny	Light	Mid-Ebb	M	4.7	12:38	12.02	8.22	30.76	22.7	3.53	10	113	0.3	NW
M1	20190204	Sunny	Light	Mid-Ebb	S	1	12:39	12.09	8.39	31.34	22.7	3.3	10	112	0.13	NW
M1	20190204	Sunny	Light	Mid-Ebb	S	1	12:39	11.98	8.14	30.22	22.7	3.04	9	112	0.15	NW
S2	20190204	Sunny	Light	Mid-Ebb	В	8.2	12:49	10.39	8.3	30.47	22.6	3.93	8	114	0.33	SE
S2	20190204	Sunny	Light	Mid-Ebb	В	8.2	12:50	10.2	8.13	30.61	22.7	3.79	8	112	0.31	SE
S2	20190204	Sunny	Light	Mid-Ebb	M	4.6	12:50	10.11	8.46	30.23	22.5	3.4	8	113	0.25	SE
S2	20190204	Sunny	Light	Mid-Ebb	M	4.6	12:51	9.93	8.47	31.21	22.7	3.61	9	112	0.27	SE
S2	20190204	Sunny	Light	Mid-Ebb	S	1	12:52	10.07	8.49	30.9	22.7	3.12	9	113	0.2	SE
S2	20190204	Sunny	Light	Mid-Ebb	S	1	12:53	9.88	8.42	31.79	22.7	3.02	9	113	0.22	SE
S3	20190204	Sunny	Light	Mid-Ebb	В	11.2	13:01	11.22	8.02	31.31	22.5	3.91	8	112	0.35	SE
S3	20190204	Sunny	Light	Mid-Ebb	В	11.2	13:02	11.34	8.05	31.34	22.5	3.94	7	113	0.34	SE
S3	20190204	Sunny	Light	Mid-Ebb	M	6.1	13:03	11.5	8.45	31.54	22.6	3.54	7	112	0.21	SE
S3	20190204	Sunny	Light	Mid-Ebb	M	6.1	13:03	11.55	8.02	30.1	22.5	3.63	6	112	0.23	SE
S3	20190204	Sunny	Light	Mid-Ebb	S	1	13:04	11.57	8.3	31.7	22.7	3.3	8	112	0.13	SE
S3	20190204	Sunny	Light	Mid-Ebb	S	1	13:05	11.56	8.1	30.23	22.6	3.26	9	113	0.14	SE
CR2	20190204	Sunny	Light	Mid-Ebb	В	9.5	13:09	11.72	8.39	30.65	22.5	3.97	8	112	0.3	SE
CR2	20190204	Sunny	Light	Mid-Ebb	В	9.5	13:09	11.92	8.29	31.02	22.6	3.76	8	113	0.31	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190204	Sunny	Light	Mid-Ebb	M	5.3	13:10	11.72	8.27	30.99	22.5	3.46	8	113	0.26	SE
CR2	20190204	Sunny	Light	Mid-Ebb	M	5.3	13:11	11.53	8.32	31.04	22.7	3.44	8	112	0.26	SE
CR2	20190204	Sunny	Light	Mid-Ebb	S	1	13:11	11.68	8.19	30.66	22.5	3.29	8	112	0.11	SE
CR2	20190204	Sunny	Light	Mid-Ebb	S	1	13:12	11.74	8.37	30.98	22.5	3.14	9	112	0.12	SE
CR1	20190204	Sunny	Light	Mid-Ebb	В	8.9	13:17	11.5	8.35	30.44	22.6	3.82	7	111	0.36	SE
CR1	20190204	Sunny	Light	Mid-Ebb	В	8.9	13:18	11.45	8.29	31.69	22.7	3.97	6	113	0.34	SE
CR1	20190204	Sunny	Light	Mid-Ebb	M	5	13:18	11.63	8.47	31	22.7	3.34	6	112	0.21	SE
CR1	20190204	Sunny	Light	Mid-Ebb	M	5	13:19	11.76	8.15	30.82	22.6	3.32	7	113	0.23	SE
CR1	20190204	Sunny	Light	Mid-Ebb	S	1	13:20	11.73	8.41	30.31	22.6	3.14	7	113	0.11	SE
CR1	20190204	Sunny	Light	Mid-Ebb	S	1	13:20	11.85	8.02	30.31	22.6	3.28	7	113	0.11	SE
H1	20190204	Sunny	Light	Mid-Ebb	В	8.6	13:23	11.64	8.15	31.39	22.7	3.85	4	113	0.35	Е
H1	20190204	Sunny	Light	Mid-Ebb	В	8.6	13:24	11.68	8.05	30.84	22.5	4	4	114	0.36	Е
H1	20190204	Sunny	Light	Mid-Ebb	M	4.8	13:25	11.73	8.11	31.04	22.7	3.38	5	112	0.27	Е
H1	20190204	Sunny	Light	Mid-Ebb	M	4.8	13:25	11.73	8.24	30.18	22.5	3.49	6	113	0.25	Е
H1	20190204	Sunny	Light	Mid-Ebb	S	1	13:26	11.81	8.03	31.72	22.6	3.02	4	113	0.2	Е
H1	20190204	Sunny	Light	Mid-Ebb	S	1	13:27	11.78	8.21	31.43	22.6	3.17	4	112	0.19	Е
В3	20190204	Sunny	Light	Mid-Ebb	В	4.3	13:42	11.16	8.05	30.25	22.5	3.76	<2	113	0.34	Е
В3	20190204	Sunny	Light	Mid-Ebb	В	4.3	13:42	11.07	8.05	30.12	22.6	3.96	3	112	0.33	Е
В3	20190204	Sunny	Light	Mid-Ebb	S	1	13:43	11.18	8.28	31.47	22.5	3.01	3	112	0.18	Е
В3	20190204	Sunny	Light	Mid-Ebb	S	1	13:44	11.06	8.32	31.71	22.7	3.24	3	113	0.19	Е
B4	20190204	Sunny	Light	Mid-Ebb	В	4.4	13:55	10.41	8.1	30.7	22.6	4	4	113	0.38	SE
B4	20190204	Sunny	Light	Mid-Ebb	В	4.4	13:56	10.29	8.39	31.08	22.7	3.91	5	112	0.36	SE
B4	20190204	Sunny	Light	Mid-Ebb	S	1	13:57	10.36	8.26	30.31	22.5	3.28	4	114	0.12	SE
B4	20190204	Sunny	Light	Mid-Ebb	S	1	13:58	10.55	8.21	31.72	22.7	3.23	Note 2	113	0.12	SE
C2	20190204	Sunny	Light	Mid-Ebb	В	8.2	14:20	12.29	8.14	30.14	22.5	3.85	3	113	0.3	S
C2	20190204	Sunny	Light	Mid-Ebb	В	8.2	14:21	12.2	8.11	31.17	22.7	3.73	3	112	0.31	S
C2	20190204	Sunny	Light	Mid-Ebb	M	4.6	14:22	12.29	8.35	30.27	22.6	3.4	3	111	0.26	S
C2	20190204	Sunny	Light	Mid-Ebb	M	4.6	14:22	12.18	8.41	30.31	22.7	3.47	3	113	0.24	S
C2	20190204	Sunny	Light	Mid-Ebb	S	1	14:23	12.33	8.49	30.65	22.7	3.28	2	113	0.18	S
C2	20190204	Sunny	Light	Mid-Ebb	S	1	14:24	12.33	8.4	30.97	22.7	3.19	3	112	0.19	S
C2	20190204	Cloudy	Moderate	Mid-Flood	В	8.5	14:50	11.21	8.25	30.92	22.7	3.98	5	112	0.39	NE
C2	20190204	Cloudy	Moderate	Mid-Flood	В	8.5	14:50	11.04	8.47	30.16	22.5	3.79	6	111	0.38	NE

C2	Location	Date	Weather	Sea	Tidal	Water Level note	Depth	Time	DO	рН	Sal (ppt)	Temp	Turbidity	SS	Total Alkalinity	Current	Direction
C2		(YYYYMMDD)		Condition		1	(m)		(mg/L)			(°C)	(NTU) Note 3	(mg/L)	(mg/L)	Velocity	in NESW
C2 20190204 Cloudy Moderate Mid-Flood S 1 14:52 11:14 8:48 31:26 22:7 3:08 5 11:3 0:11 NE C2 20190204 Cloudy Moderate Mid-Flood B 9:2 14:51 12:14 8:14 31:45 22:5 3:90 6 11:2 0:38 NW CR1 20190204 Cloudy Moderate Mid-Flood B 9:2 14:51 12:14 8:14 3:14 22:5 3:90 6 11:2 0:38 NW CR1 20190204 Cloudy Moderate Mid-Flood B 9:2 14:52 12:12 8:21 3:0.61 22:5 3:90 5 11:3 0:38 NW CR1 20190204 Cloudy Moderate Mid-Flood M 5:1 14:52 12:31 8:48 30:72 22:5 3:90 5 11:3 0:38 NW CR1 20190204 Cloudy Moderate Mid-Flood M 5:1 14:53 12:26 8:08 30:75 22:5 3:54 4 11:2 0:24 NW CR1 20190204 Cloudy Moderate Mid-Flood M 5:1 14:53 12:26 8:08 30:75 22:6 3:54 4 11:2 0:24 NW CR1 20190204 Cloudy Moderate Mid-Flood S 1 14:54 12:42 8:38 3:109 22:6 3:54 5 11:2 0:15 NW CR1 20190204 Cloudy Moderate Mid-Flood S 1 14:54 12:42 8:38 3:115 22:7 3:11 5 11:2 0:15 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9:8 15:60 10:64 8:44 3:17 8:25 3:96 6 111 0:31 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9:8 15:60 10:64 8:44 3:1:28 22:7 3:81 6 11:2 0:31 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9:8 15:60 10:64 8:44 3:1:22 2:25 3:25 5 11:2 0:21 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9:8 15:60 10:64 8:41 3:1 2:25 3:25 5 11:2 0:21 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:60 10:64 8:41 3:1 2:25 3:25 5 11:2 0:21 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:60 10:64 8:41 3:1 2:25 3:25 6 11:2 0:21 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:60 10:64 8:43 3:1 2:25 3:25 5 11:1 0:21 NW CR2 20190204 Cloudy Moderate			Cloudy														
C2	C2	20190204	Cloudy	Moderate	Mid-Flood		4.8			8.17	31.43		3.61			0.23	
CR1	C2	20190204	Cloudy	Moderate	Mid-Flood	S	1	14:52	11.14	8.48	31.26	22.7	3.03	5	113	0.11	NE
CRI 20190204 Cloudy Moderate Mid-Flood B 9.2 14/52 12/12 8.21 30.61 22.5 3.92 5 113 0.38 NW CRI 20190204 Cloudy Moderate Mid-Flood M 5.1 14/52 12.31 8.48 30.72 22.5 3.54 4 112 0.24 NW CRI 20190204 Cloudy Moderate Mid-Flood S 1 14/53 12.26 8.08 30.75 22.6 3.67 5 113 0.22 NW CRI 20190204 Cloudy Moderate Mid-Flood S 1 14/54 12.47 8.28 31.107 22.6 3.16 5 112 0.14 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15.01 10.64 8.44 31.78 22.5 3.96 6 111 0.31 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15.02 10.64 8.44 31.78 22.5 3.96 6 111 0.31 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15.02 10.64 8.44 31.78 22.5 3.96 6 111 0.31 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15.02 10.66 8.95 30.13 22.7 3.81 6 112 0.31 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15.02 10.66 8.95 30.13 22.7 3.81 6 112 0.21 NW CRI 20190204 Cloudy Moderate Mid-Flood M 5.4 15.03 10.82 8.09 30.65 22.6 3.56 5 112 0.21 NW CRI 20190204 Cloudy Moderate Mid-Flood M 5.4 15.03 10.82 8.09 30.65 22.6 3.56 5 112 0.21 NW S.3 20190204 Cloudy Moderate Mid-Flood S 1 15.04 10.55 8.25 31.51 22.5 3.25 5 111 0.17 NW S.3 20190204 Cloudy Moderate Mid-Flood B 11.4 15.09 12.17 8.31 30.23 22.5 3.87 7 112 0.38 NW S.3 20190204 Cloudy Moderate Mid-Flood B 11.4 15.09 12.17 8.31 30.23 22.5 3.57 5 111 0.17 NW S.3 20190204 Cloudy Moderate Mid-Flood B 11.4 15.09 12.17 8.31 30.23 22.5 3.59 6 111 0.19 NW S.3 20190204 Cloudy Moderate Mid-Flood B 8.2 15.12 12.08 8.26 31.62 22.6 3.56 5 112 0.38 NW S.3 20190204 Cloudy Mode	C2	20190204	Cloudy	Moderate	Mid-Flood	S	1	14:53	11.06	8.07	31.02	22.7	3.08	4	111	0.13	NE
CRI 20190204 Cloudy Moderate Mid-Flood M 5.1 14:52 12:31 8.48 30.72 22:5 3.54 4 112 0.24 NW CRI 20190204 Cloudy Moderate Mid-Flood M 5.1 14:54 12:46 8.08 30.75 22:6 3.67 5 113 0.22 NW CRI 20190204 Cloudy Moderate Mid-Flood S 1 14:54 12:47 8.28 31:15 22:6 3.16 5 112 0.14 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15:01 10:64 8.44 31.78 22:5 3.96 6 111 0.31 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15:01 10:64 8.44 31.78 22:5 3.96 6 111 0.31 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15:02 10:66 8.05 30:13 22.7 3.81 6 112 0.21 NW CRI 20190204 Cloudy Moderate Mid-Flood B 9.8 15:02 10:66 8.05 30:13 22.7 3.81 6 112 0.21 NW CRI 20190204 Cloudy Moderate Mid-Flood M 5.4 15:03 10:69 8.35 30:73 22:5 3.35 5 112 0.21 NW CRI 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10:49 8.41 31 22:5 3.25 5 111 0.21 NW CRI 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10:54 8.41 31 22:5 3.25 5 111 0.17 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10:54 8.41 31 22:5 3.25 5 111 0.17 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:05 10:55 8.25 31:51 22:5 3.25 5 111 0.17 NW S3 20190204 Cloudy Moderate Mid-Flood B 11:4 15:09 12:17 8.31 30:23 22:5 3.87 7 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood B 11:4 15:10 12:1 8.42 30:63 22:7 3.4 6 11:1 0.19 NW S3 20190204 Cloudy Moderate Mid-Flood B 11:4 15:10 12:1 8.42 30:68 22:7 3.4 6 11:1 0.19 NW S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:11 12:14 8.5 31:54 22:7 3.4 6 11:1 0.19 NW S3 20190204 Cloudy Moderate Mid-Flood B 8	CR1	20190204	Cloudy	Moderate	Mid-Flood	В	9.2	14:51	12.14	8.14	31.45	22.5	3.9	6	112	0.38	NW
CR1 20190204 Cloudy Moderate Mid-Flood M 5.1 14:53 12:26 8.08 30.75 22:6 3.67 5 113 0.22 NW	CR1	20190204	Cloudy	Moderate	Mid-Flood	В	9.2	14:52	12.12	8.21	30.61	22.5	3.92	5	113	0.38	NW
CRI 20190204 Cloudy Moderate Mid-Flood S 1 14:54 12:42 8:38 31.07 22:6 3.16 5 112 0.15 NW CRI 20190204 Cloudy Moderate Mid-Flood S 1 14:54 12:47 8:28 31.15 22.7 3.11 5 112 0.14 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9.8 15:01 10:04 8:44 31.78 22:5 3.96 6 111 0.31 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9.8 15:02 10:66 8:05 30:13 22.77 3.81 6 112 0.31 NW CR2 20190204 Cloudy Moderate Mid-Flood M 5.4 15:03 10:69 8:35 30:73 22:5 3.53 5 112 0.21 NW CR2 20190204 Cloudy Moderate Mid-Flood M 5.4 15:03 10:69 8:35 30:73 22:5 3.53 5 112 0.21 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10:54 8:41 31 22:5 3.25 6 112 0.18 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:05 10:65 82:5 31:51 22:5 3.25 5 111 0.17 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:09 12:17 8:31 30:23 22:5 3.87 7 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:09 12:17 8:31 30:23 22:5 3.87 7 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:10 12:1 8:42 30:63 22:7 3.9 6 112 0.39 NW S3 20190204 Cloudy Moderate Mid-Flood M 6:2 15:11 12:14 8:5 31:54 22:7 3.4 6 111 0.2 NW S3 20190204 Cloudy Moderate Mid-Flood M 6:2 15:11 12:14 8:5 31:54 22:7 3.4 6 111 0.2 NW S3 20190204 Cloudy Moderate Mid-Flood M 6:2 15:11 12:14 8:5 31:54 22:5 3:59 6 111 0.2 NW S3 20190204 Cloudy Moderate Mid-Flood B 8:2 15:12 12:14 8:5 31:54 22:5 3:59 6 111 0.36 NW S3 20190204 Cloudy Moderate Mid-Flood B 8:2 15:12 10:28 8:32 31:19 22:5 3:75 5 111 0:36 NW F1 20190204 Cloudy Moderate Mid-Flood B 8:	CR1	20190204	Cloudy	Moderate	Mid-Flood	M	5.1	14:52	12.31	8.48	30.72	22.5	3.54	4	112	0.24	NW
CRI 20190204 Cloudy Moderate Mid-Flood S 1 14:54 12:47 8:28 31:15 22.7 3:11 5 112 0:14 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9.8 15:01 10:64 8:44 31:78 22:5 3:36 6 111 0:31 NW CR2 20190204 Cloudy Moderate Mid-Flood B 9.8 15:02 10:66 8:05 30:13 22.7 3:81 6 112 0:31 NW CR2 20190204 Cloudy Moderate Mid-Flood M 5:4 15:03 10:82 8:09 3:065 22:6 3:36 5 112 0:2 NW CR2 20190204 Cloudy Moderate Mid-Flood M 5:4 15:03 10:82 8:09 3:065 22:6 3:55 5 112 0:2 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10:54 8:41 31 22:5 3:25 6 112 0:18 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:05 10:65 8:25 31:51 22:5 3:25 5 111 0:17 NW S3 20190204 Cloudy Moderate Mid-Flood B 11:4 15:09 12:17 8:31 30:23 22:5 3:87 7 112 0:33 NW S3 20190204 Cloudy Moderate Mid-Flood B 11:4 15:09 12:17 8:31 30:23 22:5 3:87 7 112 0:33 NW S3 20190204 Cloudy Moderate Mid-Flood B 11:4 15:09 12:17 8:31 30:23 22:5 3:87 7 112 0:39 NW S3 20190204 Cloudy Moderate Mid-Flood M 6:2 15:11 12:14 8:5 31:54 22:7 3:4 6 111 0:2 NW S3 20190204 Cloudy Moderate Mid-Flood M 6:2 15:12 12:14 8:5 31:54 22:7 3:4 6 111 0:2 NW S3 20190204 Cloudy Moderate Mid-Flood M 6:2 15:12 12:14 8:5 31:54 22:7 3:4 6 111 0:2 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:12 12:08 8:26 31:62 22:5 3:59 6 111 0:19 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:13 12:07 8:2 3:08 22:5 3:75 5 111 0:36 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:13 10:38 8:13 3:15 2:26 3:37 5 111 0:36 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15	CR1	20190204	Cloudy	Moderate	Mid-Flood	M	5.1	14:53	12.26	8.08	30.75	22.6	3.67	5	113	0.22	NW
CR2 20190204 Cloudy Moderate Mid-Flood B 9.8 15:01 10.64 8.44 31.78 22.5 3.96 6 111 0.31 NW	CR1	20190204	Cloudy	Moderate	Mid-Flood	S	1	14:54	12.42	8.38	31.07	22.6	3.16	5	112	0.15	NW
CR2 20190204 Cloudy Moderate Mid-Flood B 9.8 15:02 10:66 8.05 30.13 22.7 3.81 6 112 0.31 NW CR2 20190204 Cloudy Moderate Mid-Flood M 5.4 15:03 10.82 8.09 30.65 22.6 3.56 5 112 0.2 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10.69 8.35 30.73 22.5 3.55 5 112 0.21 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10.54 8.41 31 22.5 3.25 6 112 0.18 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:09 12.17 8.31 30.23 22.5 3.87 7 112 0.38 NW S3 20190204 <td>CR1</td> <td>20190204</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Flood</td> <td>S</td> <td>1</td> <td>14:54</td> <td>12.47</td> <td>8.28</td> <td>31.15</td> <td>22.7</td> <td>3.11</td> <td>5</td> <td>112</td> <td>0.14</td> <td>NW</td>	CR1	20190204	Cloudy	Moderate	Mid-Flood	S	1	14:54	12.47	8.28	31.15	22.7	3.11	5	112	0.14	NW
CR2 20190204 Cloudy Moderate Mid-Flood M 5.4 15:03 10.82 8.09 30.65 22.6 3.56 5 112 0.2 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:03 10.69 8.35 30.73 22.5 3.53 5 112 0.21 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:05 10.65 8.25 31.51 22.5 3.25 6 112 0.18 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:09 12.17 8.31 30.23 22.5 3.87 7 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:10 12.1 8.42 30.63 22.7 3.9 6 111 0.2 NW S3 20190204 <td>CR2</td> <td>20190204</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Flood</td> <td>В</td> <td>9.8</td> <td>15:01</td> <td>10.64</td> <td>8.44</td> <td>31.78</td> <td>22.5</td> <td>3.96</td> <td>6</td> <td>111</td> <td>0.31</td> <td>NW</td>	CR2	20190204	Cloudy	Moderate	Mid-Flood	В	9.8	15:01	10.64	8.44	31.78	22.5	3.96	6	111	0.31	NW
CR2 20190204 Cloudy Moderate Mid-Flood M 5.4 15:03 10:69 8.35 30:73 22.5 3.53 5 112 0.21 NW CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10.54 8.41 31 22.5 3.25 6 112 0.18 NW CR2 20190204 Cloudy Moderate Mid-Flood B 11.4 15:09 12.17 8.31 30.23 22.5 3.87 7 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:10 12.1 8.42 30:63 22.7 3.9 6 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:11 12.14 8.5 31.54 22.7 3.4 6 111 0.19 NW S3 20190204 <td>CR2</td> <td>20190204</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Flood</td> <td>В</td> <td>9.8</td> <td>15:02</td> <td>10.66</td> <td>8.05</td> <td>30.13</td> <td>22.7</td> <td>3.81</td> <td>6</td> <td>112</td> <td>0.31</td> <td>NW</td>	CR2	20190204	Cloudy	Moderate	Mid-Flood	В	9.8	15:02	10.66	8.05	30.13	22.7	3.81	6	112	0.31	NW
CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:04 10.54 8.41 31 22.5 3.25 6 112 0.18 NW CR2 20190204 Cloudy Moderate Mid-Flood B 11.4 15:05 10.65 8.25 31.51 22.5 3.25 5 111 0.17 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:09 12.17 8.31 30.23 22.5 3.87 7 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:11 12.14 8.5 31.54 22.7 3.9 6 111 0.2 NW S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:11 12.14 8.5 31.28 22.5 3.59 6 111 0.19 NW S3 20190204	CR2	20190204	Cloudy	Moderate	Mid-Flood	M	5.4	15:03	10.82	8.09	30.65	22.6	3.56	5	112	0.2	NW
CR2 20190204 Cloudy Moderate Mid-Flood S 1 15:05 10:65 8:25 31:51 22:5 3.25 5 111 0.17 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:09 12.17 8:31 30:23 22:5 3.87 7 112 0.38 NW S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:10 12.1 8:42 30:63 22.7 3.9 6 112 0.39 NW S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:12 12.14 8.5 31.54 22.7 3.4 6 111 0.19 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:12 12.14 8.5 31.82 22.5 3.59 6 111 0.19 NW S3 20190204	CR2	20190204	Cloudy	Moderate	Mid-Flood	M	5.4	15:03	10.69	8.35	30.73	22.5	3.53	5	112	0.21	NW
S3	CR2	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:04	10.54	8.41	31	22.5	3.25	6	112	0.18	NW
S3 20190204 Cloudy Moderate Mid-Flood B 11.4 15:10 12.1 8.42 30.63 22.7 3.9 6 112 0.39 NW S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:11 12.14 8.5 31.54 22.7 3.4 6 111 0.2 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:12 12.14 8.5 31.28 22.5 3.59 6 111 0.19 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:12 12.08 8.26 31.62 22.6 3.15 6 112 0.12 NW S3 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.28 8.32 31.19 22.5 3.71 6 112 0.36 NW F1 20190204	CR2	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:05	10.65	8.25	31.51	22.5	3.25	5	111	0.17	NW
S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:11 12.14 8.5 31.54 22.7 3.4 6 111 0.2 NW	S3	20190204	Cloudy	Moderate	Mid-Flood	В	11.4	15:09	12.17	8.31	30.23	22.5	3.87	7	112	0.38	NW
S3 20190204 Cloudy Moderate Mid-Flood M 6.2 15:12 12.14 8.5 31.28 22.5 3.59 6 111 0.19 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:12 12.08 8.26 31.62 22.6 3.15 6 112 0.12 NW S3 20190204 Cloudy Moderate Mid-Flood S 1 15:13 12.07 8.2 30.68 22.7 3.06 7 113 0.14 NW F1 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.28 8.32 31.19 22.5 3.71 6 112 0.36 NW F1 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.37 8.19 30.3 22.5 3.75 5 111 0.36 NW F1 20190204	S3	20190204	Cloudy	Moderate	Mid-Flood	В	11.4	15:10	12.1	8.42	30.63	22.7	3.9	6	112	0.39	NW
S3	S3	20190204	Cloudy	Moderate	Mid-Flood	M	6.2	15:11	12.14	8.5	31.54	22.7	3.4	6	111	0.2	NW
S3 20190204 Cloudy Moderate Mid-Flood S 1 15:13 12.07 8.2 30.68 22.7 3.06 7 113 0.14 NW F1 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.28 8.32 31.19 22.5 3.71 6 112 0.36 NW F1 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.37 8.19 30.3 22.5 3.75 5 111 0.36 NW F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:13 10.43 8.46 30.74 22.6 3.65 5 112 0.28 NW F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:14 10.35 8.07 30.98 22.6 3.56 4 112 0.2 NW F1 20190204	S3	20190204	Cloudy	Moderate	Mid-Flood	M	6.2	15:12	12.14	8.5	31.28	22.5	3.59	6	111	0.19	NW
F1 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.28 8.32 31.19 22.5 3.71 6 112 0.36 NW F1 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.37 8.19 30.3 22.5 3.75 5 111 0.36 NW F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:13 10.43 8.46 30.74 22.6 3.65 5 112 0.28 NW F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:14 10.35 8.07 30.98 22.6 3.56 4 112 0.3 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.38 8.11 31.51 22.6 3.11 6 112 0.2 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.38 8.11 31.51 22.6 3.11 6 112 0.2 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.26 8.3 30.68 22.5 3.3 5 111 0.19 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:34 11.25 8.32 31.13 22.6 3.76 4 112 0.36 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:35 11.19 8.21 30.83 22.7 3.97 4 111 0.34 NW C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:35 11.01 8.46 30.84 22.7 3.39 3 111 0.25 NW	S3	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:12	12.08	8.26	31.62	22.6	3.15	6	112	0.12	NW
F1 20190204 Cloudy Moderate Mid-Flood B 8.2 15:12 10.37 8.19 30.3 22.5 3.75 5 111 0.36 NW F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:13 10.43 8.46 30.74 22.6 3.65 5 112 0.28 NW F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:14 10.35 8.07 30.98 22.6 3.56 4 112 0.3 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.38 8.11 31.51 22.6 3.11 6 112 0.2 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.26 8.3 30.68 22.5 3.3 5 111 0.19 NW C1 20190204	S3	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:13	12.07	8.2	30.68	22.7	3.06	7	113	0.14	NW
F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:13 10.43 8.46 30.74 22.6 3.65 5 112 0.28 NW F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:14 10.35 8.07 30.98 22.6 3.56 4 112 0.3 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.38 8.11 31.51 22.6 3.11 6 112 0.2 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.26 8.3 30.68 22.5 3.3 5 111 0.19 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:35 11.19 8.21 30.83 22.7 3.97 4 111 0.34 NW C1 20190204	F1	20190204	Cloudy	Moderate	Mid-Flood	В	8.2	15:12	10.28	8.32	31.19	22.5	3.71	6	112	0.36	NW
F1 20190204 Cloudy Moderate Mid-Flood M 4.6 15:14 10.35 8.07 30.98 22.6 3.56 4 112 0.3 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.38 8.11 31.51 22.6 3.11 6 112 0.2 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.26 8.3 30.68 22.5 3.3 5 111 0.19 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:34 11.25 8.32 31.13 22.6 3.76 4 112 0.36 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:35 11.19 8.21 30.83 22.7 3.97 4 111 0.34 NW C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:35 11.01 8.46 30.84 22.7 3.39 3 111 0.25 NW	F1	20190204	Cloudy	Moderate	Mid-Flood	В	8.2	15:12	10.37	8.19	30.3	22.5	3.75	5	111	0.36	NW
F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.38 8.11 31.51 22.6 3.11 6 112 0.2 NW F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.26 8.3 30.68 22.5 3.3 5 111 0.19 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:34 11.25 8.32 31.13 22.6 3.76 4 112 0.36 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:35 11.19 8.21 30.83 22.7 3.97 4 111 0.34 NW C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:35 11.01 8.46 30.84 22.7 3.39 3 111 0.25 NW	F1	20190204	Cloudy	Moderate	Mid-Flood	M	4.6	15:13	10.43	8.46	30.74	22.6	3.65	5	112	0.28	NW
F1 20190204 Cloudy Moderate Mid-Flood S 1 15:15 10.26 8.3 30.68 22.5 3.3 5 111 0.19 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:34 11.25 8.32 31.13 22.6 3.76 4 112 0.36 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:35 11.19 8.21 30.83 22.7 3.97 4 111 0.34 NW C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:35 11.01 8.46 30.84 22.7 3.39 3 111 0.25 NW	F1	20190204	Cloudy	Moderate	Mid-Flood	M	4.6	15:14	10.35	8.07	30.98	22.6	3.56	4	112	0.3	NW
C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:34 11.25 8.32 31.13 22.6 3.76 4 112 0.36 NW C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:35 11.19 8.21 30.83 22.7 3.97 4 111 0.34 NW C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:35 11.01 8.46 30.84 22.7 3.39 3 111 0.25 NW	F1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:15	10.38	8.11	31.51	22.6	3.11	6	112	0.2	NW
C1 20190204 Cloudy Moderate Mid-Flood B 11.2 15:35 11.19 8.21 30.83 22.7 3.97 4 111 0.34 NW C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:35 11.01 8.46 30.84 22.7 3.39 3 111 0.25 NW	F1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:15	10.26	8.3	30.68	22.5	3.3	5	111	0.19	NW
C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:35 11.01 8.46 30.84 22.7 3.39 3 111 0.25 NW	C1	20190204	Cloudy	Moderate	Mid-Flood	В	11.2	15:34	11.25	8.32	31.13	22.6	3.76	4	112	0.36	NW
	C1	20190204	Cloudy	Moderate	Mid-Flood	В	11.2	15:35	11.19	8.21	30.83	22.7	3.97	4	111	0.34	NW
C1 20190204 Cloudy Moderate Mid-Flood M 6.1 15:36 11.18 8.46 31.39 22.7 3.38 4 112 0.25 NW	C1	20190204	Cloudy	Moderate	Mid-Flood	M	6.1	15:35	11.01	8.46	30.84	22.7	3.39	3	111	0.25	NW
	C1	20190204	Cloudy	Moderate	Mid-Flood	M	6.1	15:36	11.18	8.46	31.39	22.7	3.38	4	112	0.25	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:37	11.16	8.41	31.75	22.5	3.08	4	112	0.17	NW
C1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:38	11.05	8.3	31.5	22.7	3.06	4	111	0.17	NW
M1	20190204	Cloudy	Moderate	Mid-Flood	В	8.5	15:44	10.94	8.06	31.25	22.6	3.79	5	113	0.33	NW
M1	20190204	Cloudy	Moderate	Mid-Flood	В	8.5	15:45	10.83	8.21	30.77	22.6	3.93	6	111	0.32	NW
M1	20190204	Cloudy	Moderate	Mid-Flood	M	4.8	15:46	10.9	8.16	30.33	22.7	3.3	5	112	0.25	NW
M1	20190204	Cloudy	Moderate	Mid-Flood	M	4.8	15:46	10.96	8.36	30.7	22.7	3.4	6	112	0.26	NW
M1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:47	10.88	8.03	30.7	22.6	3.03	4	112	0.1	N
M1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:48	10.79	8.39	30.46	22.7	3.19	5	112	0.11	NW
B1	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	15:57	11.14	8.08	30.72	22.5	3.72	10	111	0.4	NW
B1	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	15:57	11.18	8.45	30.35	22.6	3.94	9	112	0.42	NW
B1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:58	11.34	8.21	31.74	22.7	3.07	6	112	0.15	NW
B1	20190204	Cloudy	Moderate	Mid-Flood	S	1	15:59	11.35	8.29	31.54	22.7	3.24	6	112	0.14	NW
S1	20190204	Cloudy	Moderate	Mid-Flood	В	4.6	16:04	11.57	8.45	30.14	22.7	3.71	4	112	0.3	W
S1	20190204	Cloudy	Moderate	Mid-Flood	В	4.6	16:04	11.65	8.25	31.52	22.5	3.97	4	112	0.32	W
S1	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:05	11.76	8.08	30.11	22.5	3.24	4	112	0.18	W
S1	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:06	11.96	8.17	30.57	22.7	3.13	4	111	0.18	W
B2	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	16:12	10.58	8.07	30.3	22.7	3.88	5	111	0.31	N
B2	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	16:13	10.72	8.21	30.57	22.7	3.86	4	112	0.3	N
B2	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:14	10.8	8.05	30.59	22.7	3.29	4	112	0.12	N
B2	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:15	10.73	8.34	31.43	22.6	3.13	5	112	0.13	N
S2	20190204	Cloudy	Moderate	Mid-Flood	В	9.5	16:28	11.75	8.28	30.36	22.6	3.74	4	112	0.4	NW
S2	20190204	Cloudy	Moderate	Mid-Flood	В	9.5	16:29	11.65	8.03	30.96	22.7	3.84	5	112	0.4	NW
S2	20190204	Cloudy	Moderate	Mid-Flood	M	5.3	16:30	11.66	8.38	31.64	22.6	3.45	5	112	0.22	NW
S2	20190204	Cloudy	Moderate	Mid-Flood	M	5.3	16:30	11.61	8.35	31.77	22.5	3.67	6	112	0.21	NW
S2	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:31	11.49	8.2	31.15	22.7	3	5	111	0.18	NW
S2	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:32	11.52	8.39	30.31	22.7	3.2	6	111	0.2	NW
H1	20190204	Cloudy	Moderate	Mid-Flood	В	9.1	16:39	12.14	8	31.11	22.7	3.82	7	111	0.37	W
H1	20190204	Cloudy	Moderate	Mid-Flood	В	9.1	16:39	12.07	8.36	31.26	22.6	3.84	6	112	0.35	W
H1	20190204	Cloudy	Moderate	Mid-Flood	M	5.1	16:40	12.09	8.5	30.65	22.5	3.59	7	112	0.2	W
H1	20190204	Cloudy	Moderate	Mid-Flood	M	5.1	16:41	11.92	8.06	30.45	22.7	3.32	7	112	0.21	W
H1	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:41	11.81	8	30.67	22.7	3.23	5	112	0.1	W
H1	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:42	11.94	8.23	30.65	22.5	3.3	6	111	0.09	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
В3	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	16:39	10.28	8.33	30.13	22.5	3.89	7	110	0.37	W
В3	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	16:40	10.29	8.28	31.71	22.5	3.91	7	112	0.35	W
В3	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:40	10.37	8.2	31.08	22.7	3.16	5	111	0.13	W
В3	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:41	10.19	8.16	30.74	22.5	3.02	4	112	0.15	W
B4	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	16:47	12.3	8.33	30.3	22.5	3.75	6	111	0.37	NW
B4	20190204	Cloudy	Moderate	Mid-Flood	В	4.7	16:47	12.33	8.09	31.08	22.6	3.85	5	112	0.36	NW
B4	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:48	12.4	8.17	30.41	22.6	3.01	5	112	0.14	NW
B4	20190204	Cloudy	Moderate	Mid-Flood	S	1	16:49	12.25	8.24	30.44	22.6	3.15	6	111	0.15	NW
C2	20190208	Cloudy	Calm	Mid-Flood	В	8.4	8:56	10.3	8.25	30.15	21.6	3.66	8	112	0.36	NE
C2	20190208	Cloudy	Calm	Mid-Flood	В	8.4	8:56	10.32	8.5	31.2	21.6	3.68	8	111	0.34	NE
C2	20190208	Cloudy	Calm	Mid-Flood	M	4.7	8:57	10.37	8.4	30.63	21.4	2.03	8	111	0.26	NE
C2	20190208	Cloudy	Calm	Mid-Flood	M	4.7	8:58	10.37	8.3	30.75	21.5	2.02	9	112	0.24	NE
C2	20190208	Cloudy	Calm	Mid-Flood	S	1	8:58	10.49	8.35	30.86	21.5	1.56	6	112	0.16	NE
C2	20190208	Cloudy	Calm	Mid-Flood	S	1	8:59	10.61	8.46	30.31	21.5	1.58	5	111	0.16	NE
CR1	20190208	Cloudy	Calm	Mid-Flood	В	9.1	9:07	10.72	8.48	30.99	21.4	3.11	4	112	0.35	NW
CR1	20190208	Cloudy	Calm	Mid-Flood	В	9.1	9:08	10.55	8.33	30.33	21.4	3.01	4	112	0.34	NW
CR1	20190208	Cloudy	Calm	Mid-Flood	M	5.1	9:08	10.35	8.33	30.83	21.4	2.43	3	112	0.32	NW
CR1	20190208	Cloudy	Calm	Mid-Flood	M	5.1	9:09	10.34	8.22	30.68	21.5	2.38	4	112	0.33	NW
CR1	20190208	Cloudy	Calm	Mid-Flood	S	1	9:10	10.45	8.5	31.38	21.4	1.39	5	111	0.16	NW
CR1	20190208	Cloudy	Calm	Mid-Flood	S	1	9:10	10.62	8.44	30.65	21.4	1.42	5	112	0.15	NW
CR2	20190208	Cloudy	Calm	Mid-Flood	В	9.7	9:19	9.96	8.25	30.22	21.6	3.45	7	111	0.39	NW
CR2	20190208	Cloudy	Calm	Mid-Flood	В	9.7	9:20	9.8	8.33	30.39	21.5	3.45	6	112	0.41	NW
CR2	20190208	Cloudy	Calm	Mid-Flood	M	5.4	9:21	9.65	8.5	29.82	21.4	2.27	7	112	0.28	NW
CR2	20190208	Cloudy	Calm	Mid-Flood	M	5.4	9:21	9.48	8.14	31.1	21.4	2.2	7	111	0.3	NW
CR2	20190208	Cloudy	Calm	Mid-Flood	S	1	9:22	9.43	8.01	30.35	21.6	1.34	8	111	0.21	NW
CR2	20190208	Cloudy	Calm	Mid-Flood	S	1	9:23	9.43	8.43	30.98	21.4	1.33	8	112	0.23	NW
F1	20190208	Cloudy	Calm	Mid-Flood	В	8.3	9:20	10.96	8.2	30.14	21.6	3.18	2	111	0.36	NW
F1	20190208	Cloudy	Calm	Mid-Flood	В	8.3	9:21	11.13	8.33	31.11	21.5	3.12	3	111	0.35	NW
F1	20190208	Cloudy	Calm	Mid-Flood	M	4.7	9:22	10.98	8.28	30.78	21.4	2.21	4	111	0.27	NW
F1	20190208	Cloudy	Calm	Mid-Flood	M	4.7	9:23	10.91	8.06	31	21.6	2.2	4	111	0.29	NW
F1	20190208	Cloudy	Calm	Mid-Flood	S	1	9:23	10.81	8	30.85	21.6	1.05	4	112	0.2	NW
F1	20190208	Cloudy	Calm	Mid-Flood	S	1	9:24	10.63	8.2	30.28	21.6	0.96	4	111	0.18	NW

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S3	20190208	Cloudy	Calm	Mid-Flood	В	11.3	9:27	10.82	8.26	30.67	21.6	3.67	5	111	0.39	NW
S3	20190208	Cloudy	Calm	Mid-Flood	В	11.3	9:27	11.02	8.27	31.27	21.6	3.6	4	112	0.38	NW
S3	20190208	Cloudy	Calm	Mid-Flood	M	6.2	9:28	10.99	8.3	30	21.6	2.68	5	112	0.32	NW
S3	20190208	Cloudy	Calm	Mid-Flood	M	6.2	9:29	10.94	8.17	30.16	21.6	2.59	4	111	0.31	NW
S3	20190208	Cloudy	Calm	Mid-Flood	S	1	9:30	10.78	8.4	30.46	21.5	1.79	5	110	0.15	NW
S3	20190208	Cloudy	Calm	Mid-Flood	S	1	9:30	10.89	8.22	30.95	21.4	1.84	6	112	0.16	NW
C1	20190208	Cloudy	Calm	Mid-Flood	В	11.4	9:51	11.42	8.11	29.87	21.6	4	4	111	0.44	NW
C1	20190208	Cloudy	Calm	Mid-Flood	В	11.4	9:52	11.23	8.32	30.42	21.6	4.07	3	111	0.46	NW
C1	20190208	Cloudy	Calm	Mid-Flood	M	6.2	9:52	11.05	8.25	30.61	21.4	2.92	4	111	0.35	NW
C1	20190208	Cloudy	Calm	Mid-Flood	M	6.2	9:53	11.13	8.5	30.52	21.5	2.93	3	110	0.36	NW
C1	20190208	Cloudy	Calm	Mid-Flood	S	1	9:54	11.14	8.4	30.29	21.5	1.81	3	111	0.23	NW
C1	20190208	Cloudy	Calm	Mid-Flood	S	1	9:55	11.3	8.04	31.09	21.4	1.84	3	110	0.22	NW
M1	20190208	Cloudy	Calm	Mid-Flood	В	8.6	9:56	10.53	8.29	30	21.6	3.5	4	111	0.43	NW
M1	20190208	Cloudy	Calm	Mid-Flood	В	8.6	9:57	10.39	8.49	30.05	21.4	3.52	4	113	0.41	NW
M1	20190208	Cloudy	Calm	Mid-Flood	M	4.8	9:58	10.35	8.39	30.03	21.5	2.78	4	111	0.25	NW
M1	20190208	Cloudy	Calm	Mid-Flood	M	4.8	9:58	10.21	8.02	30.23	21.4	2.7	5	112	0.24	NW
M1	20190208	Cloudy	Calm	Mid-Flood	S	1	9:59	10.39	8.49	30.05	21.6	1.98	4	112	0.15	NW
M1	20190208	Cloudy	Calm	Mid-Flood	S	1	10:00	10.57	8.28	30.06	21.5	1.96	5	112	0.13	NW
B1	20190208	Cloudy	Calm	Mid-Flood	В	4.8	10:16	11.24	8.1	30.98	21.5	3.17	4	111	0.43	NW
B1	20190208	Cloudy	Calm	Mid-Flood	В	4.8	10:16	11.36	8.12	30.69	21.5	3.16	3	110	0.43	NW
B1	20190208	Cloudy	Calm	Mid-Flood	S	1	10:17	11.35	8.34	29.93	21.5	1.15	2	112	0.17	NW
B1	20190208	Cloudy	Calm	Mid-Flood	S	1	10:18	11.48	8.43	29.91	21.6	1.17	2	112	0.17	NW
S1	20190208	Cloudy	Calm	Mid-Flood	В	4.7	10:27	10.48	8.05	29.92	21.6	3.05	2	111	0.42	W
S1	20190208	Cloudy	Calm	Mid-Flood	В	4.7	10:28	10.67	8.2	29.9	21.6	3.09	2	111	0.41	W
S1	20190208	Cloudy	Calm	Mid-Flood	S	1	10:29	10.47	8.05	31.04	21.4	1.79	5	112	0.19	W
S1	20190208	Cloudy	Calm	Mid-Flood	S	1	10:30	10.35	8.44	30.14	21.4	1.71	4	112	0.17	W
B2	20190208	Cloudy	Calm	Mid-Flood	В	4.7	10:37	10.24	8.1	29.9	21.6	3.2	4	112	0.37	N
B2	20190208	Cloudy	Calm	Mid-Flood	В	4.7	10:38	10.38	8.47	30.49	21.6	3.19	5	112	0.37	N
B2	20190208	Cloudy	Calm	Mid-Flood	S	1	10:39	10.34	8.49	30.95	21.6	1.51	4	112	0.2	N
B2	20190208	Cloudy	Calm	Mid-Flood	S	1	10:39	10.31	8.03	30.9	21.5	1.61	5	110	0.18	N
H1	20190208	Cloudy	Calm	Mid-Flood	В	9.2	10:40	9.56	8.46	31.15	21.6	3.05	3	112	0.39	W
H1	20190208	Cloudy	Calm	Mid-Flood	В	9.2	10:41	9.72	8	30.68	21.4	3.05	4	110	0.4	W

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190208	Cloudy	Calm	Mid-Flood	M	5.1	10:42	9.8	8.11	30.35	21.4	2.48	2	112	0.29	W
H1	20190208	Cloudy	Calm	Mid-Flood	M	5.1	10:42	9.67	8.27	31.07	21.4	2.38	<2	110	0.28	W
H1	20190208	Cloudy	Calm	Mid-Flood	S	1	10:43	9.78	8.15	31.09	21.5	1.59	4	111	0.19	W
H1	20190208	Cloudy	Calm	Mid-Flood	S	1	10:44	9.65	8.29	31.13	21.6	1.69	3	111	0.2	W
S2	20190208	Cloudy	Calm	Mid-Flood	В	9.3	10:53	11.26	8.42	30.29	21.4	3.03	4	111	0.43	W
S2	20190208	Cloudy	Calm	Mid-Flood	В	9.3	10:53	11.2	8.46	30.49	21.4	3.1	5	111	0.42	W
S2	20190208	Cloudy	Calm	Mid-Flood	M	5.2	10:54	11.32	8.37	30.92	21.5	2.91	6	111	0.33	W
S2	20190208	Cloudy	Calm	Mid-Flood	M	5.2	10:55	11.33	8.2	30.9	21.4	2.88	6	111	0.32	W
S2	20190208	Cloudy	Calm	Mid-Flood	S	1	10:55	11.45	8.14	29.93	21.5	1.19	6	112	0.15	W
S2	20190208	Cloudy	Calm	Mid-Flood	S	1	10:56	11.65	8.48	30.68	21.5	1.28	5	111	0.14	W
В3	20190208	Cloudy	Calm	Mid-Flood	В	4.8	10:59	11.05	8.31	30.2	21.5	3.02	4	111	0.41	W
В3	20190208	Cloudy	Calm	Mid-Flood	В	4.8	11:00	11.07	8.22	30.03	21.5	2.92	4	111	0.39	W
В3	20190208	Cloudy	Calm	Mid-Flood	S	1	11:00	10.87	8.47	31.11	21.6	1.59	2	112	0.24	W
В3	20190208	Cloudy	Calm	Mid-Flood	S	1	11:01	10.91	8.11	30.33	21.6	1.64	3	111	0.26	W
B4	20190208	Cloudy	Calm	Mid-Flood	В	4.7	11:13	10.52	8.47	31.02	21.6	3.91	4	111	0.43	NW
B4	20190208	Cloudy	Calm	Mid-Flood	В	4.7	11:13	10.6	8.5	30.99	21.5	3.96	4	112	0.44	NW
B4	20190208	Cloudy	Calm	Mid-Flood	S	1	11:14	10.7	8.5	30.69	21.4	1.09	4	111	0.15	NW
B4	20190208	Cloudy	Calm	Mid-Flood	S	1	11:15	10.89	8.32	29.94	21.5	1.03	5	110	0.17	NW
C1	20190208	Fine	Moderate	Mid-Ebb	В	10.7	12:16	10.33	8.39	30.5	21.4	3.19	6	112	0.39	SE
C1	20190208	Fine	Moderate	Mid-Ebb	В	10.7	12:16	10.36	8.12	30.99	21.5	3.11	5	112	0.41	SE
C1	20190208	Fine	Moderate	Mid-Ebb	M	5.9	12:17	10.31	8.04	30.66	21.5	2.07	8	111	0.33	SE
C1	20190208	Fine	Moderate	Mid-Ebb	M	5.9	12:18	10.11	8.38	30.69	21.4	2.03	8	113	0.34	SE
C1	20190208	Fine	Moderate	Mid-Ebb	S	1	12:18	10	8.25	30.16	21.5	1.82	7	112	0.18	SE
C1	20190208	Fine	Moderate	Mid-Ebb	S	1	12:19	9.83	8.23	30.29	21.6	1.89	8	112	0.19	SE
B1	20190208	Fine	Moderate	Mid-Ebb	В	4.4	13:11	10.38	8.46	30.76	21.4	3.02	6	111	0.39	NE
B1	20190208	Fine	Moderate	Mid-Ebb	В	4.4	13:12	10.38	8.09	30.85	21.4	3	6	112	0.37	NE
B1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:12	10.24	8.33	29.99	21.6	1.99	6	112	0.16	NE
B1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:13	10.33	8.5	31.25	21.4	2.07	6	112	0.15	NE
F1	20190208	Fine	Moderate	Mid-Ebb	В	7.7	13:17	10.32	8.29	30.8	21.6	3.86	6	113	0.44	SE
F1	20190208	Fine	Moderate	Mid-Ebb	В	7.7	13:17	10.26	8.27	30.33	21.5	3.83	6	111	0.45	SE
F1	20190208	Fine	Moderate	Mid-Ebb	M	4.4	13:18	10.35	8.41	30.29	21.4	2.74	5	112	0.33	SE
F1	20190208	Fine	Moderate	Mid-Ebb	M	4.4	13:19	10.46	8.27	29.86	21.5	2.67	6	111	0.32	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:20	10.46	8.23	30.78	21.5	1.55	6	113	0.15	SE
F1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:20	10.52	8.05	30.3	21.6	1.53	6	112	0.17	SE
S1	20190208	Fine	Moderate	Mid-Ebb	В	4.4	13:22	11.38	8.2	29.94	21.4	3.57	10	111	0.43	Е
S1	20190208	Fine	Moderate	Mid-Ebb	В	4.4	13:23	11.29	8.29	31.24	21.6	3.48	9	111	0.42	Е
S1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:23	11.45	8.01	31.04	21.4	1.13	6	112	0.25	Е
S1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:24	11.65	8.23	31.27	21.4	1.2	6	112	0.25	Е
B2	20190208	Fine	Moderate	Mid-Ebb	В	4.3	13:31	11.31	8.18	29.84	21.4	3.56	8	112	0.39	SE
B2	20190208	Fine	Moderate	Mid-Ebb	В	4.3	13:32	11.13	8.14	31.02	21.4	3.51	9	111	0.38	SE
B2	20190208	Fine	Moderate	Mid-Ebb	S	1	13:32	11.17	8.15	31.09	21.6	1.16	7	112	0.24	SE
B2	20190208	Fine	Moderate	Mid-Ebb	S	1	13:33	11.02	8.24	31.4	21.6	1.23	7	111	0.23	SE
S2	20190208	Fine	Moderate	Mid-Ebb	В	8.1	13:47	10.32	8.22	31.19	21.4	3.23	6	112	0.38	SE
S2	20190208	Fine	Moderate	Mid-Ebb	В	8.1	13:47	10.33	8.15	31.05	21.6	3.19	7	112	0.39	SE
S2	20190208	Fine	Moderate	Mid-Ebb	M	4.6	13:48	10.38	8.22	30.89	21.4	2.54	6	112	0.26	SE
S2	20190208	Fine	Moderate	Mid-Ebb	M	4.6	13:49	10.19	8.06	29.96	21.5	2.44	7	112	0.28	SE
S2	20190208	Fine	Moderate	Mid-Ebb	S	1	13:50	10.28	8.14	29.9	21.6	1.36	5	112	0.19	SE
S2	20190208	Fine	Moderate	Mid-Ebb	S	1	13:50	10.28	8.19	30.74	21.5	1.4	4	112	0.2	SE
M1	20190208	Fine	Moderate	Mid-Ebb	В	8.4	13:50	10.41	8.01	30.71	21.6	3.89	6	112	0.37	N
M1	20190208	Fine	Moderate	Mid-Ebb	В	8.4	13:51	10.34	8.24	31.14	21.6	3.88	7	110	0.38	N
M1	20190208	Fine	Moderate	Mid-Ebb	M	4.7	13:51	10.34	8.11	30.68	21.5	2.8	6	111	0.27	N
M1	20190208	Fine	Moderate	Mid-Ebb	M	4.7	13:52	10.5	8.36	30.01	21.6	2.87	5	112	0.25	N
M1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:53	10.49	8	30.29	21.6	1.85	7	111	0.21	N
M1	20190208	Fine	Moderate	Mid-Ebb	S	1	13:54	10.58	8.39	29.98	21.5	1.85	6	112	0.22	N
CR2	20190208	Fine	Moderate	Mid-Ebb	В	9.4	14:00	11.04	8.19	30.1	21.4	3.2	4	111	0.38	SE
CR2	20190208	Fine	Moderate	Mid-Ebb	В	9.4	14:01	10.91	8.48	30.4	21.5	3.15	3	111	0.39	SE
CR2	20190208	Fine	Moderate	Mid-Ebb	M	5.2	14:02	10.71	8.03	30.18	21.6	2.34	5	112	0.34	SE
CR2	20190208	Fine	Moderate	Mid-Ebb	M	5.2	14:02	10.56	8.39	30.38	21.4	2.41	5	111	0.36	SE
CR2	20190208	Fine	Moderate	Mid-Ebb	S	1	14:03	10.4	8.28	30.64	21.5	1.55	5	112	0.17	SE
CR2	20190208	Fine	Moderate	Mid-Ebb	S	1	14:04	10.57	8.36	30.1	21.5	1.63	6	111	0.15	SE
S3	20190208	Fine	Moderate	Mid-Ebb	В	11.1	14:10	10.21	8.29	30.52	21.4	3.82	7	112	0.38	SE
S3	20190208	Fine	Moderate	Mid-Ebb	В	11.1	14:10	10.09	8.46	31.23	21.4	3.79	7	112	0.37	SE
S3	20190208	Fine	Moderate	Mid-Ebb	M	6.1	14:11	10.09	8.05	30.93	21.5	2.93	7	112	0.33	SE
S3	20190208	Fine	Moderate	Mid-Ebb	M	6.1	14:12	10.24	8.12	30.82	21.4	2.99	7	111	0.34	SE

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S3	20190208	Fine	Moderate	Mid-Ebb	S	1	14:13	10.11	8.42	29.82	21.5	1.24	6	111	0.25	SE
S3	20190208	Fine	Moderate	Mid-Ebb	S	1	14:13	10.28	8.07	30.89	21.6	1.19	5	111	0.23	SE
CR1	20190208	Fine	Moderate	Mid-Ebb	В	9	14:22	9.85	8.43	31	21.4	3.63	6	111	0.44	SE
CR1	20190208	Fine	Moderate	Mid-Ebb	В	9	14:23	10.01	8.27	30.24	21.6	3.55	7	112	0.42	SE
CR1	20190208	Fine	Moderate	Mid-Ebb	M	5	14:23	9.93	8.43	30.86	21.6	2.06	6	112	0.35	SE
CR1	20190208	Fine	Moderate	Mid-Ebb	M	5	14:24	9.9	8.36	30.09	21.5	2.05	6	111	0.35	SE
CR1	20190208	Fine	Moderate	Mid-Ebb	S	1	14:25	9.72	8.05	30.12	21.5	1.19	7	112	0.23	SE
CR1	20190208	Fine	Moderate	Mid-Ebb	S	1	14:26	9.56	8.13	30.19	21.5	1.17	6	111	0.21	SE
H1	20190208	Fine	Moderate	Mid-Ebb	В	8.7	14:34	11.39	8.1	31.34	21.6	3.41	7	112	0.44	SE
H1	20190208	Fine	Moderate	Mid-Ebb	В	8.7	14:35	11.31	8.04	30.23	21.5	3.49	7	112	0.44	SE
H1	20190208	Fine	Moderate	Mid-Ebb	M	4.9	14:36	11.49	8.3	30.52	21.4	2.85	8	112	0.32	SE
H1	20190208	Fine	Moderate	Mid-Ebb	M	4.9	14:36	11.65	8.49	30.12	21.6	2.91	8	112	0.3	SE
H1	20190208	Fine	Moderate	Mid-Ebb	S	1	14:37	11.77	8.17	29.92	21.4	1.98	10	112	0.22	SE
H1	20190208	Fine	Moderate	Mid-Ebb	S	1	14:38	11.76	8.21	30.35	21.5	1.96	9	113	0.24	SE
В3	20190208	Fine	Moderate	Mid-Ebb	В	4.4	14:38	10.95	8.07	30.19	21.6	3.03	8	112	0.41	Е
В3	20190208	Fine	Moderate	Mid-Ebb	В	4.4	14:38	10.94	8.02	29.92	21.4	3.04	8	111	0.4	Е
В3	20190208	Fine	Moderate	Mid-Ebb	S	1	14:39	11.01	8.41	30.11	21.4	1.2	4	113	0.24	Е
В3	20190208	Fine	Moderate	Mid-Ebb	S	1	14:40	10.9	8.24	31.09	21.6	1.1	4	112	0.23	Е
B4	20190208	Fine	Moderate	Mid-Ebb	В	4.5	14:49	9.98	8.39	30.96	21.5	3.42	6	112	0.41	SE
B4	20190208	Fine	Moderate	Mid-Ebb	В	4.5	14:50	9.84	8.18	30.88	21.5	3.34	6	112	0.4	SE
B4	20190208	Fine	Moderate	Mid-Ebb	S	1	14:51	9.87	8.17	31.16	21.4	1.69	6	112	0.2	SE
B4	20190208	Fine	Moderate	Mid-Ebb	S	1	14:52	9.88	8.43	30.36	21.6	1.64	5	112	0.21	SE
C2	20190208	Fine	Moderate	Mid-Ebb	В	8.3	15:00	10.04	8.33	30.44	21.4	3.59	5	112	0.36	S
C2	20190208	Fine	Moderate	Mid-Ebb	В	8.3	15:01	10.1	8.24	30.16	21.5	3.67	5	112	0.37	S
C2	20190208	Fine	Moderate	Mid-Ebb	M	4.7	15:02	10.17	8.16	31.22	21.5	2.75	5	112	0.3	S
C2	20190208	Fine	Moderate	Mid-Ebb	M	4.7	15:02	10.32	8.16	31.16	21.6	2.77	4	112	0.31	S
C2	20190208	Fine	Moderate	Mid-Ebb	S	1	15:03	10.12	8.49	31.23	21.4	1.25	6	113	0.18	S
C2	20190208	Fine	Moderate	Mid-Ebb	S	1	15:04	10.06	8.43	30.71	21.4	1.29	6	112	0.19	S
C2	20190211	Sunny	Calm	Mid-Flood	В	8.6	9:05	10.24	8.11	30.01	21.4	3.98	3	-	-	-
C2	20190211	Sunny	Calm	Mid-Flood	В	8.6	9:05	10.26	8.18	30.1	21.4	3.9	3	-	-	-
C2	20190211	Sunny	Calm	Mid-Flood	M	4.8	9:06	10.42	8.1	30.63	21.4	2.9	<2	-	-	-
C2	20190211	Sunny	Calm	Mid-Flood	M	4.8	9:06	10.23	8.46	30.08	21.4	2.94	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190211	Sunny	Calm	Mid-Flood	S	1	9:07	10.4	8.31	30.16	21.4	2.15	3	-	-	-
C2	20190211	Sunny	Calm	Mid-Flood	S	1	9:08	10.48	8.13	29.79	21.4	2.33	<2	-	-	-
B4	20190211	Sunny	Calm	Mid-Flood	В	4.7	9:15	10.54	8.33	30.03	21.3	3.52	2	-	-	-
B4	20190211	Sunny	Calm	Mid-Flood	В	4.7	9:16	10.41	8.03	30.69	21.4	4.12	3	-	-	-
B4	20190211	Sunny	Calm	Mid-Flood	S	1	9:16	10.47	8	30.95	21.3	2.22	4	-	-	-
B4	20190211	Sunny	Calm	Mid-Flood	S	1	9:17	10.64	8.4	30.1	21.4	2.11	4	-	-	-
В3	20190211	Sunny	Calm	Mid-Flood	В	4.8	9:24	11.66	8.26	31.15	21.3	3.51	4	-	-	-
В3	20190211	Sunny	Calm	Mid-Flood	В	4.8	9:24	11.65	8.37	30.4	21.4	3.65	3	-	-	-
В3	20190211	Sunny	Calm	Mid-Flood	S	1	9:25	11.68	8.45	30.47	21.2	1.63	<2	-	-	-
В3	20190211	Sunny	Calm	Mid-Flood	S	1	9:26	11.52	8.13	30.09	21.4	1.5	2	-	-	-
H1	20190211	Sunny	Calm	Mid-Flood	В	8.7	9:18	11.09	8.48	30.6	21.2	3.63	3	-	-	-
H1	20190211	Sunny	Calm	Mid-Flood	В	8.7	9:19	11.07	8.46	31.15	21.4	3.69	2	-	-	-
H1	20190211	Sunny	Calm	Mid-Flood	M	4.9	9:19	11.1	8.31	30.5	21.2	3.34	3	-	-	-
H1	20190211	Sunny	Calm	Mid-Flood	M	4.9	9:20	10.98	8.18	30.6	21.2	2.94	3	-	-	-
H1	20190211	Sunny	Calm	Mid-Flood	S	1	9:21	10.88	8.44	30.25	21.3	1.55	2	-	-	-
H1	20190211	Sunny	Calm	Mid-Flood	S	1	9:21	10.69	8.28	30.01	21.2	2.1	3	-	-	-
CR2	20190211	Sunny	Calm	Mid-Flood	В	9.7	9:37	11.34	8.09	30.58	21.2	3.91	4	-	-	-
CR2	20190211	Sunny	Calm	Mid-Flood	В	9.7	9:37	11.16	8.39	30.61	21.4	4.33	4	-	-	-
CR2	20190211	Sunny	Calm	Mid-Flood	M	5.4	9:38	11	8.4	30.99	21.2	3.12	3	-	-	-
CR2	20190211	Sunny	Calm	Mid-Flood	M	5.4	9:39	10.97	8.4	31.16	21.4	2.93	3	-	-	-
CR2	20190211	Sunny	Calm	Mid-Flood	S	1	9:39	11.12	8.16	29.8	21.3	1.65	4	-	-	-
CR2	20190211	Sunny	Calm	Mid-Flood	S	1	9:40	11.18	8.09	30.84	21.3	2.27	3	-	-	-
B2	20190211	Sunny	Calm	Mid-Flood	В	4.7	9:47	11.04	8.15	31.16	21.4	4.13	<2	-	-	-
B2	20190211	Sunny	Calm	Mid-Flood	В	4.7	9:47	10.97	8.13	30.54	21.3	4.25	<2	-	-	-
B2	20190211	Sunny	Calm	Mid-Flood	S	1	9:48	10.9	8.13	30.74	21.4	2.49	3	-	-	-
B2	20190211	Sunny	Calm	Mid-Flood	S	1	9:48	10.74	8.16	29.71	21.4	1.74	3	-	-	-
B1	20190211	Sunny	Calm	Mid-Flood	В	4.6	10:01	10.64	8.41	30.57	21.3	4.25	4	-	-	-
B1	20190211	Sunny	Calm	Mid-Flood	В	4.6	10:02	10.63	8.22	29.8	21.2	4.06	5	-	-	-
B1	20190211	Sunny	Calm	Mid-Flood	S	1	10:02	10.56	8.3	31.14	21.2	1.85	3	-	-	-
B1	20190211	Sunny	Calm	Mid-Flood	S	1	10:03	10.58	8.16	30.63	21.4	1.6	2	-	-	-
CR1	20190211	Sunny	Calm	Mid-Flood	В	9.1	9:51	10.84	8.4	29.92	21.2	3.95	3	-	-	-
CR1	20190211	Sunny	Calm	Mid-Flood	В	9.1	9:52	11.01	8.06	30.93	21.3	4.26	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190211	Sunny	Calm	Mid-Flood	M	5.1	9:53	11.08	8.19	30.27	21.3	3.32	3	-	-	-
CR1	20190211	Sunny	Calm	Mid-Flood	M	5.1	9:53	11	8.18	29.98	21.2	3.02	<2	-	-	-
CR1	20190211	Sunny	Calm	Mid-Flood	S	1	9:54	10.9	8.26	31.03	21.2	1.72	2	-	-	-
CR1	20190211	Sunny	Calm	Mid-Flood	S	1	9:55	10.76	8.07	30.74	21.2	2.46	<2	-	-	-
C1	20190211	Sunny	Calm	Mid-Flood	В	11.3	10:28	11.42	8.27	29.73	21.3	3.73	2	-	-	-
C1	20190211	Sunny	Calm	Mid-Flood	В	11.3	10:29	11.48	8.2	30.32	21.2	4.08	2	-	-	-
C1	20190211	Sunny	Calm	Mid-Flood	M	6.2	10:29	11.48	8.11	30.81	21.2	3.45	4	-	-	-
C1	20190211	Sunny	Calm	Mid-Flood	M	6.2	10:30	11.29	8.19	29.98	21.2	3.19	3	-	-	-
C1	20190211	Sunny	Calm	Mid-Flood	S	1	10:31	11.47	8.37	30.06	21.3	1.86	3	-	-	-
C1	20190211	Sunny	Calm	Mid-Flood	S	1	10:31	11.66	8.01	30.11	21.2	1.54	3	-	-	-
F1	20190211	Sunny	Calm	Mid-Flood	В	8.1	11:43	11	8.5	29.97	21.2	3.9	<2	-	-	-
F1	20190211	Sunny	Calm	Mid-Flood	В	8.1	11:43	11.04	8.28	30.96	21.4	3.64	<2	-	-	-
F1	20190211	Sunny	Calm	Mid-Flood	M	4.6	11:44	10.96	8.33	29.82	21.2	3.02	<2	-	-	-
F1	20190211	Sunny	Calm	Mid-Flood	M	4.6	11:45	10.99	8.03	31.17	21.2	2.8	<2	-	-	-
F1	20190211	Sunny	Calm	Mid-Flood	S	1	11:45	10.89	8.39	31.17	21.3	1.75	<2	-	-	-
F1	20190211	Sunny	Calm	Mid-Flood	S	1	11:46	10.72	8.09	30.48	21.3	1.87	2	-	-	-
M1	20190211	Sunny	Calm	Mid-Flood	В	8.3	12:16	11.19	8.35	30.65	21.2	4.32	2	-	-	-
M1	20190211	Sunny	Calm	Mid-Flood	В	8.3	12:16	11.07	8.12	29.98	21.2	3.93	2	-	-	-
M1	20190211	Sunny	Calm	Mid-Flood	M	4.7	12:17	11.26	8.29	30.83	21.4	3.34	2	-	-	-
M1	20190211	Sunny	Calm	Mid-Flood	M	4.7	12:17	11.22	8.5	30.29	21.2	2.54	3	-	-	-
M1	20190211	Sunny	Calm	Mid-Flood	S	1	12:18	11.31	8.46	30.03	21.3	2.4	2	-	-	-
M1	20190211	Sunny	Calm	Mid-Flood	S	1	12:19	11.13	8.07	30.74	21.2	2.21	3	-	-	-
C1	20190211	Cloudy	Light	Mid-Ebb	В	10.9	14:52	11.1	8.1	30.97	21.3	3.76	6	-	-	-
C1	20190211	Cloudy	Light	Mid-Ebb	В	10.9	14:53	11.26	8.14	30.85	21.4	4.14	6	-	-	-
C1	20190211	Cloudy	Light	Mid-Ebb	M	6	14:54	11.3	8.03	30.16	21.2	3.08	5	-	-	-
C1	20190211	Cloudy	Light	Mid-Ebb	M	6	14:54	11.16	8.47	30.42	21.2	2.53	4	-	-	-
C1	20190211	Cloudy	Light	Mid-Ebb	S	1	14:55	11	8.44	30.18	21.3	1.53	4	-	-	-
C1	20190211	Cloudy	Light	Mid-Ebb	S	1	14:55	11.15	8.16	30.84	21.4	2.48	3	-	-	-
B1	20190211	Cloudy	Light	Mid-Ebb	В	4.4	15:31	11.34	8.44	30.36	21.2	4.15	5	-	-	-
B1	20190211	Cloudy	Light	Mid-Ebb	В	4.4	15:32	11.45	8.36	30.14	21.3	4.3	4	-	-	-
B1	20190211	Cloudy	Light	Mid-Ebb	S	1	15:32	11.32	8.31	30.33	21.4	2.47	5	-	-	-
B1	20190211	Cloudy	Light	Mid-Ebb	S	1	15:33	11.46	8.34	29.92	21.2	1.53	5	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B2	20190211	Cloudy	Light	Mid-Ebb	В	4.4	15:40	10.66	8.26	30.94	21.3	3.52	5	-	-	-
B2	20190211	Cloudy	Light	Mid-Ebb	В	4.4	15:41	10.85	8.2	29.99	21.3	3.83	4	-	-	-
B2	20190211	Cloudy	Light	Mid-Ebb	S	1	15:42	10.78	8.16	30.07	21.2	1.95	5	-	-	-
B2	20190211	Cloudy	Light	Mid-Ebb	S	1	15:42	10.96	8.01	30.59	21.2	2.45	4	-	-	-
В3	20190211	Cloudy	Light	Mid-Ebb	В	4.5	16:04	10.92	8.39	30.34	21.3	4.12	7	-	-	-
В3	20190211	Cloudy	Light	Mid-Ebb	В	4.5	16:05	11.01	8.03	30.24	21.2	4.44	6	-	-	-
В3	20190211	Cloudy	Light	Mid-Ebb	S	1	16:05	11.1	8.38	30.91	21.3	2.18	5	-	-	-
В3	20190211	Cloudy	Light	Mid-Ebb	S	1	16:06	11.15	8.23	30.17	21.2	2.44	4	-	-	-
B4	20190211	Cloudy	Light	Mid-Ebb	В	4.5	16:13	11.01	8.34	30.25	21.4	3.99	6	-	-	-
B4	20190211	Cloudy	Light	Mid-Ebb	В	4.5	16:14	11.06	8.06	30.21	21.4	4.1	7	-	-	-
B4	20190211	Cloudy	Light	Mid-Ebb	S	1	16:15	11.02	8.37	30.1	21.4	2.48	6	-	-	-
B4	20190211	Cloudy	Light	Mid-Ebb	S	1	16:15	11.22	8	30.3	21.2	2.18	6	-	-	-
C2	20190211	Cloudy	Light	Mid-Ebb	В	8.3	16:24	10.82	8.48	29.71	21.4	3.8	5	-	-	-
C2	20190211	Cloudy	Light	Mid-Ebb	В	8.3	16:24	10.76	8.36	30.71	21.4	4.32	6	-	-	-
C2	20190211	Cloudy	Light	Mid-Ebb	M	4.7	16:25	10.75	8.25	30.86	21.4	2.64	6	-	-	-
C2	20190211	Cloudy	Light	Mid-Ebb	M	4.7	16:26	10.73	8.29	31.02	21.4	3.49	5	-	-	-
C2	20190211	Cloudy	Light	Mid-Ebb	S	1	16:26	10.53	8.12	31.13	21.4	1.67	6	-	-	-
C2	20190211	Cloudy	Light	Mid-Ebb	S	1	16:27	10.68	8.34	31.15	21.4	1.74	5	-	-	-
F1	20190211	Cloudy	Light	Mid-Ebb	В	7.9	16:44	10.93	8.16	30.13	21.3	4.35	6	-	-	-
F1	20190211	Cloudy	Light	Mid-Ebb	В	7.9	16:44	10.95	8.33	30.06	21.2	4.18	7	-	-	-
F1	20190211	Cloudy	Light	Mid-Ebb	M	4.5	16:45	11.1	8.09	30.42	21.3	3.12	5	-	-	-
F1	20190211	Cloudy	Light	Mid-Ebb	M	4.5	16:45	11.19	8.13	30.78	21.3	2.8	6	-	-	-
F1	20190211	Cloudy	Light	Mid-Ebb	S	1	16:46	11.39	8.19	31.14	21.3	1.84	5	-	-	-
F1	20190211	Cloudy	Light	Mid-Ebb	S	1	16:47	11.48	8.16	29.92	21.2	2.24	6	-	-	-
M1	20190211	Cloudy	Light	Mid-Ebb	В	8.2	17:10	10.84	8.2	30.34	21.3	3.59	4	-	-	-
M1	20190211	Cloudy	Light	Mid-Ebb	В	8.2	17:11	10.94	8.46	30.26	21.2	4.04	4	-	-	-
M1	20190211	Cloudy	Light	Mid-Ebb	M	4.6	17:11	10.75	8.21	30.12	21.4	2.54	4	-	-	-
M1	20190211	Cloudy	Light	Mid-Ebb	M	4.6	17:12	10.68	8.44	30.9	21.2	3.38	5	-	-	-
M1	20190211	Cloudy	Light	Mid-Ebb	S	1	17:13	10.62	8.21	30.98	21.2	1.99	6	-	-	-
M1	20190211	Cloudy	Light	Mid-Ebb	S	1	17:13	10.45	8.03	30.48	21.2	1.5	6	-	-	-
H1	20190211	Cloudy	Light	Mid-Ebb	В	8.5	14:53	11.27	8.25	30.04	21.2	3.7	2	-	-	-
H1	20190211	Cloudy	Light	Mid-Ebb	В	8.5	14:54	11.11	8.03	30.45	21.3	3.53	2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190211	Cloudy	Light	Mid-Ebb	M	4.8	14:54	11.21	8.42	30.52	21.3	3.33	2	-	-	-
H1	20190211	Cloudy	Light	Mid-Ebb	M	4.8	14:55	11.37	8.48	29.9	21.3	3.35	2	-	-	-
H1	20190211	Cloudy	Light	Mid-Ebb	S	1	14:55	11.34	8.43	30.34	21.2	1.87	2	-	-	-
H1	20190211	Cloudy	Light	Mid-Ebb	S	1	14:56	11.17	8.32	30.22	21.2	1.99	3	-	-	-
CR2	20190211	Cloudy	Light	Mid-Ebb	В	9.4	15:13	10.41	8.29	30.41	21.4	4.03	<2	-	-	-
CR2	20190211	Cloudy	Light	Mid-Ebb	В	9.4	15:13	10.31	8.08	30.69	21.3	4.17	<2	-	-	-
CR2	20190211	Cloudy	Light	Mid-Ebb	M	5.2	15:14	10.28	8.49	30.78	21.4	3.36	4	-	-	-
CR2	20190211	Cloudy	Light	Mid-Ebb	M	5.2	15:14	10.26	8.43	30.93	21.2	3.21	3	-	-	-
CR2	20190211	Cloudy	Light	Mid-Ebb	S	1	15:15	10.08	8.34	31.04	21.2	2.45	4	-	-	-
CR2	20190211	Cloudy	Light	Mid-Ebb	S	1	15:16	10.13	8.18	31.16	21.4	2.18	3	-	-	-
CR1	20190211	Cloudy	Light	Mid-Ebb	В	8.8	15:27	10.83	8.24	30.08	21.2	4.4	4	-	-	-
CR1	20190211	Cloudy	Light	Mid-Ebb	В	8.8	15:28	10.77	8.12	30.43	21.3	3.77	3	-	-	-
CR1	20190211	Cloudy	Light	Mid-Ebb	M	4.9	15:29	10.76	8.45	30.74	21.3	2.59	2	-	-	-
CR1	20190211	Cloudy	Light	Mid-Ebb	M	4.9	15:29	10.81	8.18	31.06	21.4	3.01	<2	-	-	-
CR1	20190211	Cloudy	Light	Mid-Ebb	S	1	15:30	10.7	8.17	30.5	21.2	1.52	<2	-	-	-
CR1	20190211	Cloudy	Light	Mid-Ebb	S	1	15:30	10.58	8.41	31.1	21.4	2.5	3	-	-	-
C2	20190213	Sunny	Calm	Mid-Flood	В	8.6	11:13	9.62	8.1	30.76	21.3	3.99	<2	-	-	-
C2	20190213	Sunny	Calm	Mid-Flood	В	8.6	11:13	9.73	8.01	30.92	21.5	4.09	<2	-	-	-
C2	20190213	Sunny	Calm	Mid-Flood	M	4.8	11:14	9.66	8.31	29.8	21.5	2.65	<2	-	-	-
C2	20190213	Sunny	Calm	Mid-Flood	M	4.8	11:14	9.85	8.1	29.76	21.5	2.75	<2	-	-	-
C2	20190213	Sunny	Calm	Mid-Flood	S	1	11:15	9.99	8.11	29.95	21.5	1.49	<2	-	-	-
C2	20190213	Sunny	Calm	Mid-Flood	S	1	11:15	10.14	8.16	30.7	21.5	1.54	<2	-	-	-
CR1	20190213	Sunny	Calm	Mid-Flood	В	9.4	11:26	10.15	8.06	30.2	21.4	3.07	<2	-	-	-
CR1	20190213	Sunny	Calm	Mid-Flood	В	9.4	11:26	10.16	8.02	29.92	21.3	3.16	2	-	-	-
CR1	20190213	Sunny	Calm	Mid-Flood	M	5.2	11:27	10.32	8.14	30.26	21.5	2.51	<2	-	-	-
CR1	20190213	Sunny	Calm	Mid-Flood	M	5.2	11:27	10.17	8.31	30.76	21.3	2.59	<2	-	-	-
CR1	20190213	Sunny	Calm	Mid-Flood	S	1	11:28	10.37	8.45	30.41	21.4	1.17	<2	-	-	-
CR1	20190213	Sunny	Calm	Mid-Flood	S	1	11:28	10.38	8	30.45	21.4	1.27	<2	-	-	-
CR2	20190213	Sunny	Calm	Mid-Flood	В	9.6	11:39	9.59	8.27	29.78	21.4	3.22	<2	-	-	-
CR2	20190213	Sunny	Calm	Mid-Flood	В	9.6	11:39	9.56	8.2	30.26	21.4	3.13	<2	-	-	-
CR2	20190213	Sunny	Calm	Mid-Flood	M	5.3	11:40	9.42	8.25	30.77	21.4	2.4	<2	-	-	-
CR2	20190213	Sunny	Calm	Mid-Flood	M	5.3	11:40	9.26	8.11	29.83	21.5	2.46	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190213	Sunny	Calm	Mid-Flood	S	1	11:41	9.19	8.09	29.91	21.3	1.2	<2	-	-	-
CR2	20190213	Sunny	Calm	Mid-Flood	S	1	11:41	9.06	8.47	30.64	21.3	1.28	2	-	-	-
C1	20190213	Sunny	Calm	Mid-Flood	В	11.5	12:01	10.83	8.45	30.59	21.3	3.54	<2	-	-	-
C1	20190213	Sunny	Calm	Mid-Flood	В	11.5	12:01	10.92	8.11	30.38	21.4	3.51	<2	-	-	-
C1	20190213	Sunny	Calm	Mid-Flood	M	6.3	12:02	11.07	8.38	30.52	21.4	2.44	<2	-	-	-
C1	20190213	Sunny	Calm	Mid-Flood	M	6.3	12:02	10.91	8.38	30.12	21.4	2.46	<2	-	-	-
C1	20190213	Sunny	Calm	Mid-Flood	S	1	12:03	11.11	8.11	29.98	21.3	1.33	<2	-	-	-
C1	20190213	Sunny	Calm	Mid-Flood	S	1	12:03	10.99	8.49	30.42	21.4	1.43	<2	-	-	-
B1	20190213	Sunny	Calm	Mid-Flood	В	4.8	12:30	9.68	8.3	30.78	21.3	3.45	<2	-	-	-
B1	20190213	Sunny	Calm	Mid-Flood	В	4.8	12:30	9.49	8.04	29.73	21.5	3.37	<2	-	-	-
B1	20190213	Sunny	Calm	Mid-Flood	S	1	12:31	9.34	8.36	29.77	21.5	1.42	<2	-	-	-
B1	20190213	Sunny	Calm	Mid-Flood	S	1	12:31	9.47	8.47	29.93	21.5	1.4	<2	-	-	-
B2	20190213	Sunny	Calm	Mid-Flood	В	4.7	12:35	11.11	8.26	30.33	21.5	3.99	<2	-	-	-
B2	20190213	Sunny	Calm	Mid-Flood	В	4.7	12:35	11.28	8.45	30.92	21.4	4.05	<2	-	-	-
B2	20190213	Sunny	Calm	Mid-Flood	S	1	12:36	11.16	8.1	29.96	21.5	1.69	<2	-	-	-
B2	20190213	Sunny	Calm	Mid-Flood	S	1	12:37	11.29	8.48	30.58	21.4	1.64	<2	-	-	-
В3	20190213	Sunny	Calm	Mid-Flood	В	4.8	13:11	10.24	8.13	30.63	21.3	3.23	2	-	-	-
В3	20190213	Sunny	Calm	Mid-Flood	В	4.8	13:12	10.22	8.12	30.15	21.5	3.2	2	-	-	-
В3	20190213	Sunny	Calm	Mid-Flood	S	1	13:12	10.32	8.35	30.75	21.5	1.87	<2	-	-	-
В3	20190213	Sunny	Calm	Mid-Flood	S	1	13:13	10.3	8.44	30.18	21.5	1.83	<2	-	-	-
B4	20190213	Sunny	Calm	Mid-Flood	В	4.7	13:20	9.65	8.48	30.37	21.4	3.4	<2	-	-	-
B4	20190213	Sunny	Calm	Mid-Flood	В	4.7	13:21	9.74	8.06	30.15	21.5	3.39	<2	-	-	-
B4	20190213	Sunny	Calm	Mid-Flood	S	1	13:21	9.68	8.43	30.91	21.4	1.94	<2	-	-	-
B4	20190213	Sunny	Calm	Mid-Flood	S	1	13:22	9.67	8.25	29.87	21.5	1.9	<2	-	-	-
F1	20190213	Sunny	Calm	Mid-Flood	В	8.2	13:48	11.15	8.37	30.36	21.4	3.19	<2	-	-	-
F1	20190213	Sunny	Calm	Mid-Flood	В	8.2	13:49	11.08	8.26	29.98	21.4	3.16	<2	-	-	-
F1	20190213	Sunny	Calm	Mid-Flood	M	4.6	13:49	11.25	8.38	30.59	21.3	2.16	<2	-	-	-
F1	20190213	Sunny	Calm	Mid-Flood	M	4.6	13:50	11.18	8.35	30.89	21.3	2.26	<2	-	-	-
F1	20190213	Sunny	Calm	Mid-Flood	S	1	13:50	11.08	8.15	30.75	21.3	1.12	<2	-	-	-
F1	20190213	Sunny	Calm	Mid-Flood	S	1	13:51	11.23	8.45	30.85	21.3	1.08	<2	-	-	-
M1	20190213	Sunny	Calm	Mid-Flood	В	8.6	13:59	9.97	8.48	30.74	21.4	3.33	<2	-	-	-
M1	20190213	Sunny	Calm	Mid-Flood	В	8.6	14:00	9.98	8.05	30.21	21.5	3.4	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190213	Sunny	Calm	Mid-Flood	M	4.8	14:00	9.9	8.09	30.59	21.3	2.43	<2	-	-	-
M1	20190213	Sunny	Calm	Mid-Flood	M	4.8	14:01	9.95	8.22	30.38	21.4	2.45	<2	-	-	-
M1	20190213	Sunny	Calm	Mid-Flood	S	1	14:01	10.02	8.06	29.85	21.4	1.44	<2	-	-	-
M1	20190213	Sunny	Calm	Mid-Flood	S	1	14:02	10.18	8.22	30.62	21.5	1.41	<2	-	-	-
H1	20190213	Sunny	Calm	Mid-Flood	В	7.9	12:59	9.99	8.27	30.27	21.3	3.75	<2	-	-	-
H1	20190213	Sunny	Calm	Mid-Flood	В	7.9	13:00	9.81	8.35	29.99	21.4	3.72	<2	-	-	-
H1	20190213	Sunny	Calm	Mid-Flood	M	4.5	13:00	9.88	8.07	30.66	21.5	2.51	<2	-	-	-
H1	20190213	Sunny	Calm	Mid-Flood	M	4.5	13:01	9.79	8.2	30.15	21.3	2.48	<2	-	-	-
H1	20190213	Sunny	Calm	Mid-Flood	S	1	13:01	9.94	8.09	30.86	21.5	1.26	<2	-	-	-
H1	20190213	Sunny	Calm	Mid-Flood	S	1	13:02	9.76	8.35	30.34	21.5	1.16	<2	-	-	-
C1	20190213	Cloudy	Light	Mid-Ebb	В	10.8	16:04	10.32	8.4	30.02	21.4	3.82	<2	-	-	-
C1	20190213	Cloudy	Light	Mid-Ebb	В	10.8	16:05	10.13	8.14	30.23	21.5	3.82	<2	-	-	-
C1	20190213	Cloudy	Light	Mid-Ebb	M	5.9	16:06	10.13	8.35	30.09	21.3	2.1	<2	-	-	-
C1	20190213	Cloudy	Light	Mid-Ebb	M	5.9	16:06	10.12	8.47	30.15	21.5	2.11	<2	-	-	-
C1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:07	10.03	8.46	30.9	21.5	1.74	<2	-	-	-
C1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:07	9.99	8.44	29.94	21.5	1.71	<2	-	-	-
F1	20190213	Cloudy	Light	Mid-Ebb	В	7.7	16:07	10.16	8.01	30.81	21.5	3.41	<2	-	-	-
F1	20190213	Cloudy	Light	Mid-Ebb	В	7.7	16:07	10.17	8.07	30.53	21.4	3.42	<2	-	-	-
F1	20190213	Cloudy	Light	Mid-Ebb	M	4.4	16:08	10.28	8.46	29.91	21.3	2.7	<2	-	-	-
F1	20190213	Cloudy	Light	Mid-Ebb	M	4.4	16:08	10.26	8.15	30.61	21.5	2.64	<2	-	-	-
F1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:09	10.08	8.03	30.19	21.5	1.42	<2	-	-	-
F1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:09	10.11	8.19	30.98	21.3	1.52	<2	-	-	-
B1	20190213	Cloudy	Light	Mid-Ebb	В	4.4	16:25	9.51	8.06	30.13	21.4	3.34	<2	-	-	-
B1	20190213	Cloudy	Light	Mid-Ebb	В	4.4	16:25	9.42	8.28	30.67	21.3	3.35	<2	-	-	-
B1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:26	9.27	8.44	30.66	21.4	1.64	<2	-	-	-
B1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:26	9.33	8.18	30.38	21.3	1.57	2	-	-	-
M1	20190213	Cloudy	Light	Mid-Ebb	В	8	16:35	10.06	8.34	30.04	21.4	3.89	<2	-	-	-
M1	20190213	Cloudy	Light	Mid-Ebb	В	8	16:35	10.25	8.15	30.22	21.3	3.92	<2	-	-	-
M1	20190213	Cloudy	Light	Mid-Ebb	M	4.5	16:36	10.42	8	30.73	21.3	2.15	<2	-	-	-
M1	20190213	Cloudy	Light	Mid-Ebb	M	4.5	16:36	10.56	8.33	30.54	21.4	2.15	<2	-	-	-
M1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:37	10.75	8.06	30.78	21.5	1.07	<2	-	-	-
M1	20190213	Cloudy	Light	Mid-Ebb	S	1	16:37	10.94	8.02	29.9	21.5	0.98	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B2	20190213	Cloudy	Light	Mid-Ebb	В	4.5	16:37	11.16	8.14	29.82	21.5	3.79	<2	-	-	-
B2	20190213	Cloudy	Light	Mid-Ebb	В	4.5	16:37	11.04	8.44	29.74	21.5	3.7	<2	-	-	-
B2	20190213	Cloudy	Light	Mid-Ebb	S	1	16:38	11.01	8.1	29.93	21.4	1.78	<2	-	-	-
B2	20190213	Cloudy	Light	Mid-Ebb	S	1	16:38	10.85	8.12	30	21.5	1.78	<2	-	-	-
CR2	20190213	Cloudy	Light	Mid-Ebb	В	9.2	17:04	9.6	8.1	30.58	21.5	3.85	<2	-	-	-
CR2	20190213	Cloudy	Light	Mid-Ebb	В	9.2	17:04	9.64	8.19	30.79	21.4	3.85	<2	-	-	-
CR2	20190213	Cloudy	Light	Mid-Ebb	M	5.1	17:05	9.52	8.5	30.03	21.4	2.51	<2	-	-	-
CR2	20190213	Cloudy	Light	Mid-Ebb	M	5.1	17:05	9.64	8.31	30.1	21.5	2.53	<2	-	-	-
CR2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:06	9.71	8.5	30.93	21.3	1.78	<2	-	-	-
CR2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:06	9.71	8.17	29.71	21.4	1.86	<2	-	-	-
C2	20190213	Cloudy	Light	Mid-Ebb	В	8.2	17:03	9.54	8.36	30.17	21.4	3.16	<2	-	-	-
C2	20190213	Cloudy	Light	Mid-Ebb	В	8.2	17:04	9.44	8.16	30.44	21.4	3.13	<2	-	-	-
C2	20190213	Cloudy	Light	Mid-Ebb	M	4.6	17:04	9.25	8.3	30.05	21.4	2.59	<2	-	-	-
C2	20190213	Cloudy	Light	Mid-Ebb	M	4.6	17:05	9.34	8.37	30.13	21.5	2.65	<2	-	-	-
C2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:05	9.35	8.32	30.65	21.5	1.82	<2	-	-	-
C2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:06	9.53	8.01	29.71	21.3	1.78	<2	-	-	-
H1	20190213	Cloudy	Light	Mid-Ebb	В	8.4	17:25	10.54	8.05	30.27	21.5	3.26	<2	-	-	-
H1	20190213	Cloudy	Light	Mid-Ebb	В	8.4	17:26	10.73	8.13	30.97	21.3	3.25	2	-	-	-
H1	20190213	Cloudy	Light	Mid-Ebb	M	4.7	17:26	10.82	8.06	30.83	21.5	2.94	<2	-	-	-
H1	20190213	Cloudy	Light	Mid-Ebb	M	4.7	17:27	10.89	8.44	30.66	21.3	2.98	<2	-	-	-
H1	20190213	Cloudy	Light	Mid-Ebb	S	1	17:27	11.03	8.18	30.39	21.3	1.84	<2	-	-	-
H1	20190213	Cloudy	Light	Mid-Ebb	S	1	17:28	11.15	8.18	30.16	21.4	1.87	<2	-	-	-
В3	20190213	Cloudy	Light	Mid-Ebb	В	4.4	17:39	11.43	8.27	30.86	21.4	3.4	2	-	-	-
В3	20190213	Cloudy	Light	Mid-Ebb	В	4.4	17:40	11.42	8.5	30.49	21.3	3.35	2	-	-	-
В3	20190213	Cloudy	Light	Mid-Ebb	S	1	17:40	11.24	8.26	30.21	21.3	2	2	-	-	-
В3	20190213	Cloudy	Light	Mid-Ebb	S	1	17:41	11.31	8.28	30.5	21.3	2.04	2	-	-	-
B4	20190213	Cloudy	Light	Mid-Ebb	В	4.3	17:52	11.15	8.44	30.75	21.4	3.54	2	-	-	-
B4	20190213	Cloudy	Light	Mid-Ebb	В	4.3	17:53	11.33	8.39	30.19	21.3	3.62	<2	-	-	-
B4	20190213	Cloudy	Light	Mid-Ebb	S	1	17:53	11.33	8.27	30.06	21.4	1.5	3	-	-	-
B4	20190213	Cloudy	Light	Mid-Ebb	S	1	17:54	11.44	8.43	29.9	21.3	1.45	4	-	-	-
CR1	20190213	Cloudy	Light	Mid-Ebb	В	8.7	18:12	9.91	8.25	30.24	21.3	3.89	3	-	-	-
CR1	20190213	Cloudy	Light	Mid-Ebb	В	8.7	18:13	9.76	8.13	29.93	21.5	3.82	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190213	Cloudy	Light	Mid-Ebb	M	4.9	18:13	9.9	8.38	30.31	21.4	2.56	<2	-	-	-
CR1	20190213	Cloudy	Light	Mid-Ebb	M	4.9	18:14	10	8.31	30.25	21.4	2.56	<2	-	-	-
CR1	20190213	Cloudy	Light	Mid-Ebb	S	1	18:14	10.07	8.22	30.23	21.4	1.9	<2	-	-	-
CR1	20190213	Cloudy	Light	Mid-Ebb	S	1	18:15	10.1	8.14	30.36	21.3	1.95	<2	-	-	-
C1	20190215	Cloudy	Light	Mid-Ebb	В	10.7	8:07	9.96	8.39	30.18	22.7	4.17	<2	-	-	-
C1	20190215	Cloudy	Light	Mid-Ebb	В	10.7	8:07	10.04	8.43	29.8	22.6	4.16	<2	-	-	-
C1	20190215	Cloudy	Light	Mid-Ebb	M	5.9	8:08	10.05	8.44	30.92	22.6	3.56	<2	-	-	-
C1	20190215	Cloudy	Light	Mid-Ebb	M	5.9	8:08	10.04	8.23	30.85	22.7	3.54	<2	-	-	-
C1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:09	10.14	8.06	30.39	22.8	3.3	<2	-	-	-
C1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:09	10.28	8.33	30.54	22.8	3.24	<2	-	-	-
H1	20190215	Cloudy	Light	Mid-Ebb	В	7.8	8:09	10.76	8.21	29.98	22.8	4.15	<2	-	-	-
H1	20190215	Cloudy	Light	Mid-Ebb	В	7.8	8:09	10.93	8.5	29.5	22.8	4.08	<2	-	-	-
H1	20190215	Cloudy	Light	Mid-Ebb	M	4.4	8:10	10.93	8.07	30.49	22.6	3.62	<2	-	-	-
H1	20190215	Cloudy	Light	Mid-Ebb	M	4.4	8:10	10.81	8.28	29.96	22.7	3.61	<2	-	-	-
H1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:11	11	8.41	30.15	22.7	3.16	<2	-	-	-
H1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:11	11.01	8.29	29.6	22.8	3.12	<2	-	-	-
CR2	20190215	Cloudy	Light	Mid-Ebb	В	9.3	8:23	10.7	8.01	30.48	22.8	4.45	<2	-	-	-
CR2	20190215	Cloudy	Light	Mid-Ebb	В	9.3	8:23	10.77	8.17	30.08	22.7	4.44	2	-	-	-
CR2	20190215	Cloudy	Light	Mid-Ebb	M	5.2	8:24	10.66	8.42	30.46	22.8	3.59	2	-	-	-
CR2	20190215	Cloudy	Light	Mid-Ebb	M	5.2	8:24	10.49	8.18	30.55	22.6	3.56	<2	-	-	-
CR2	20190215	Cloudy	Light	Mid-Ebb	S	1	8:25	10.6	8.17	30.5	22.6	3.17	<2	-	-	-
CR2	20190215	Cloudy	Light	Mid-Ebb	S	1	8:25	10.68	8.37	29.88	22.8	3.13	<2	-	-	-
CR1	20190215	Cloudy	Light	Mid-Ebb	В	8.7	8:35	10.82	8.24	30.76	22.8	4.13	<2	-	-	-
CR1	20190215	Cloudy	Light	Mid-Ebb	В	8.7	8:35	10.84	8.45	30.82	22.8	4.06	<2	-	-	-
CR1	20190215	Cloudy	Light	Mid-Ebb	M	4.9	8:36	10.71	8.01	29.92	22.7	3.72	2	-	-	-
CR1	20190215	Cloudy	Light	Mid-Ebb	M	4.9	8:36	10.59	8.03	30.49	22.8	3.81	<2	-	-	-
CR1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:37	10.59	8.48	30.84	22.6	3.29	3	-	-	-
CR1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:37	10.46	8.24	29.57	22.7	3.29	3	-	-	-
B1	20190215	Cloudy	Light	Mid-Ebb	В	4.4	8:36	10.32	8.07	30.98	22.6	4.41	<2	-	-	-
B1	20190215	Cloudy	Light	Mid-Ebb	В	4.4	8:36	10.17	8.37	30.41	22.8	4.41	3	-	-	-
B1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:37	10.32	8.29	30.65	22.6	3.4	<2	-	-	-
B1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:37	10.37	8.07	29.5	22.8	3.38	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B2	20190215	Cloudy	Light	Mid-Ebb	В	4.5	8:38	9.82	8.37	30.76	22.8	4.45	<2	-	-	-
B2	20190215	Cloudy	Light	Mid-Ebb	В	4.5	8:38	9.91	8.2	30.44	22.6	4.54	<2	-	-	-
B2	20190215	Cloudy	Light	Mid-Ebb	S	1	8:39	9.74	8.32	30.78	22.8	3.06	<2	-	-	-
B2	20190215	Cloudy	Light	Mid-Ebb	S	1	8:40	9.63	8.38	30.4	22.6	3.02	<2	-	-	-
В3	20190215	Cloudy	Light	Mid-Ebb	В	4.5	8:16	10.35	8.11	30.95	22.8	4.36	<2	-	-	-
В3	20190215	Cloudy	Light	Mid-Ebb	В	4.5	8:17	10.23	8.08	30.93	22.6	4.43	<2	-	-	-
В3	20190215	Cloudy	Light	Mid-Ebb	S	1	8:17	10.39	8.04	29.52	22.8	3.25	<2	-	-	-
В3	20190215	Cloudy	Light	Mid-Ebb	S	1	8:18	10.22	8.4	29.97	22.8	3.23	<2	-	-	-
B4	20190215	Cloudy	Light	Mid-Ebb	В	4.5	8:27	9.9	8.12	30.11	22.6	4	<2	-	-	-
B4	20190215	Cloudy	Light	Mid-Ebb	В	4.5	8:28	9.99	8.3	29.97	22.7	3.91	<2	-	-	-
B4	20190215	Cloudy	Light	Mid-Ebb	S	1	8:28	10.14	8.25	29.82	22.8	3.26	<2	-	-	-
B4	20190215	Cloudy	Light	Mid-Ebb	S	1	8:29	10.09	8.24	30.55	22.7	3.17	<2	-	-	-
F1	20190215	Cloudy	Light	Mid-Ebb	В	8	8:57	10.41	8	30.51	22.7	4.47	<2	-	-	-
F1	20190215	Cloudy	Light	Mid-Ebb	В	8	8:58	10.39	8.3	30.5	22.6	4.42	<2	-	-	-
F1	20190215	Cloudy	Light	Mid-Ebb	M	4.5	8:58	10.46	8.14	29.6	22.8	3.75	<2	-	-	-
F1	20190215	Cloudy	Light	Mid-Ebb	M	4.5	8:59	10.44	8.12	30.72	22.7	3.78	<2	-	-	-
F1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:59	10.33	8.28	30.58	22.8	3.09	2	-	-	-
F1	20190215	Cloudy	Light	Mid-Ebb	S	1	9:00	10.38	8.07	30.59	22.7	3.16	2	-	-	-
M1	20190215	Cloudy	Light	Mid-Ebb	В	8.3	10:27	10.89	8.44	30.02	22.7	4.17	3	-	-	-
M1	20190215	Cloudy	Light	Mid-Ebb	В	8.3	10:28	10.93	8.38	29.7	22.6	4.26	4	-	-	-
M1	20190215	Cloudy	Light	Mid-Ebb	M	4.7	10:28	10.82	8.5	30.32	22.7	3.72	<2	-	-	-
M1	20190215	Cloudy	Light	Mid-Ebb	M	4.7	10:29	10.62	8.41	29.69	22.7	3.71	3	-	-	-
M1	20190215	Cloudy	Light	Mid-Ebb	S	1	10:29	10.71	8.12	30.45	22.6	3.5	2	-	-	-
M1	20190215	Cloudy	Light	Mid-Ebb	S	1	10:30	10.81	8.34	29.6	22.8	3.49	2	-	-	-
C2	20190215	Cloudy	Light	Mid-Ebb	В	8.4	10:54	10	8.48	30	22.8	4.3	<2	-	-	-
C2	20190215	Cloudy	Light	Mid-Ebb	В	8.4	10:55	10.02	8.28	29.73	22.8	4.22	<2	-	-	-
C2	20190215	Cloudy	Light	Mid-Ebb	M	4.7	10:55	9.87	8.23	29.75	22.8	3.89	<2	-	-	-
C2	20190215	Cloudy	Light	Mid-Ebb	M	4.7	10:56	9.73	8.14	30.17	22.6	3.88	<2	-	-	-
C2	20190215	Cloudy	Light	Mid-Ebb	S	1	10:56	9.53	8.03	30.3	22.8	3.38	<2	-	-	-
C2	20190215	Cloudy	Light	Mid-Ebb	S	1	10:57	9.4	8.39	30.08	22.8	3.36	<2	-	-	-
C2	20190215	Sunny	Calm	Mid-Flood	В	8.7	11:42	10.95	8.43	29.64	22.8	4.36	<2	-	-	-
C2	20190215	Sunny	Calm	Mid-Flood	В	8.7	11:43	11.15	8.27	29.65	22.6	4.46	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190215	Sunny	Calm	Mid-Flood	M	4.9	11:44	10.99	8.21	29.69	22.8	3.59	<2	-	-	-
C2	20190215	Sunny	Calm	Mid-Flood	M	4.9	11:44	11.13	8.01	30.53	22.6	3.49	<2	-	-	-
C2	20190215	Sunny	Calm	Mid-Flood	S	1	11:45	11.26	8.39	30.9	22.7	3.01	<2	-	-	-
C2	20190215	Sunny	Calm	Mid-Flood	S	1	11:45	11.39	8.32	29.56	22.8	3.1	<2	-	-	-
H1	20190215	Sunny	Calm	Mid-Flood	В	8.6	11:59	9.9	8.15	30.63	22.6	4.42	2	-	-	-
H1	20190215	Sunny	Calm	Mid-Flood	В	8.6	11:59	9.87	8.43	29.88	22.8	4.39	<2	-	-	-
H1	20190215	Sunny	Calm	Mid-Flood	M	4.8	12:00	9.85	8.37	30.22	22.6	3.87	<2	-	-	-
H1	20190215	Sunny	Calm	Mid-Flood	M	4.8	12:00	9.9	8.4	30.91	22.7	3.96	<2	-	-	-
H1	20190215	Sunny	Calm	Mid-Flood	S	1	12:01	9.78	8.02	29.95	22.8	3.17	<2	-	-	-
H1	20190215	Sunny	Calm	Mid-Flood	S	1	12:01	9.76	8.25	29.52	22.6	3.27	<2	-	-	-
C1	20190215	Sunny	Calm	Mid-Flood	В	11.4	12:13	10.43	8.28	29.58	22.8	4	<2	-	-	-
C1	20190215	Sunny	Calm	Mid-Flood	В	11.4	12:13	10.37	8.25	30.3	22.7	4.08	<2	-	-	-
C1	20190215	Sunny	Calm	Mid-Flood	M	6.2	12:14	10.49	8.06	30.94	22.6	3.99	<2	-	-	-
C1	20190215	Sunny	Calm	Mid-Flood	M	6.2	12:14	10.57	8.4	30.75	22.6	4	<2	-	-	-
C1	20190215	Sunny	Calm	Mid-Flood	S	1	12:15	10.52	8.15	30.52	22.6	3.41	<2	-	-	-
C1	20190215	Sunny	Calm	Mid-Flood	S	1	12:15	10.4	8.07	29.99	22.7	3.37	<2	-	-	-
CR2	20190215	Sunny	Calm	Mid-Flood	В	9.8	12:28	9.8	8.42	30.46	22.8	4.21	2	-	-	-
CR2	20190215	Sunny	Calm	Mid-Flood	В	9.8	12:28	9.81	8.11	30.99	22.8	4.15	<2	-	-	-
CR2	20190215	Sunny	Calm	Mid-Flood	M	5.4	12:29	9.71	8.22	29.74	22.7	3.81	2	-	-	-
CR2	20190215	Sunny	Calm	Mid-Flood	M	5.4	12:29	9.51	8.48	30.47	22.7	3.76	2	-	-	-
CR2	20190215	Sunny	Calm	Mid-Flood	S	1	12:30	9.41	8.07	29.77	22.6	3.04	<2	-	-	-
CR2	20190215	Sunny	Calm	Mid-Flood	S	1	12:30	9.41	8.37	30.79	22.8	2.98	<2	-	-	-
B1	20190215	Sunny	Calm	Mid-Flood	В	4.8	12:42	9.8	8.3	30.58	22.7	4.41	<2	-	-	-
B1	20190215	Sunny	Calm	Mid-Flood	В	4.8	12:42	9.63	8.32	29.85	22.6	4.43	<2	-	-	-
B1	20190215	Sunny	Calm	Mid-Flood	S	1	12:43	9.71	8.25	30.01	22.6	3.45	<2	-	-	-
B1	20190215	Sunny	Calm	Mid-Flood	S	1	12:43	9.85	8.24	29.68	22.7	3.35	<2	-	-	-
B2	20190215	Sunny	Calm	Mid-Flood	В	4.7	12:56	9.64	8.15	30.58	22.7	4.27	<2	-	-	-
B2	20190215	Sunny	Calm	Mid-Flood	В	4.7	12:56	9.55	8.12	30.72	22.6	4.18	<2	-	-	-
B2	20190215	Sunny	Calm	Mid-Flood	S	1	12:57	9.39	8.11	29.66	22.8	3.41	<2	-	-	-
B2	20190215	Sunny	Calm	Mid-Flood	S	1	12:57	9.39	8.03	30.08	22.7	3.44	<2	-	-	-
В3	20190215	Sunny	Calm	Mid-Flood	В	4.8	13:21	10.07	8.29	30.25	22.7	4.18	<2	-	-	-
В3	20190215	Sunny	Calm	Mid-Flood	В	4.8	13:22	10.24	8.1	30.23	22.6	4.08	2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
В3	20190215	Sunny	Calm	Mid-Flood	S	1	13:22	10.42	8.46	29.66	22.6	3.19	<2	-	-	-
В3	20190215	Sunny	Calm	Mid-Flood	S	1	13:23	10.59	8.43	30.93	22.6	3.12	<2	-	-	-
B4	20190215	Sunny	Calm	Mid-Flood	В	4.8	13:30	10.82	8.23	30.43	22.7	4.15	<2	-	-	-
B4	20190215	Sunny	Calm	Mid-Flood	В	4.8	13:31	10.66	8.3	30.24	22.8	4.15	<2	-	-	-
B4	20190215	Sunny	Calm	Mid-Flood	S	1	13:31	10.84	8.16	30.6	22.6	3.17	<2	-	-	-
B4	20190215	Sunny	Calm	Mid-Flood	S	1	13:32	11.04	8.41	30.92	22.7	3.18	<2	-	-	-
CR1	20190215	Sunny	Calm	Mid-Flood	В	9.2	13:42	10.84	8.18	29.51	22.7	4.49	2	-	-	-
CR1	20190215	Sunny	Calm	Mid-Flood	В	9.2	13:43	10.65	8.01	30.77	22.8	4.49	3	-	-	-
CR1	20190215	Sunny	Calm	Mid-Flood	M	5.1	13:43	10.54	8.2	30.86	22.7	3.97	<2	-	-	-
CR1	20190215	Sunny	Calm	Mid-Flood	M	5.1	13:44	10.63	8.01	29.77	22.7	3.96	<2	-	-	-
CR1	20190215	Sunny	Calm	Mid-Flood	S	1	13:44	10.6	8.28	29.69	22.6	3.45	2	-	-	-
CR1	20190215	Sunny	Calm	Mid-Flood	S	1	13:45	10.44	8.36	30.68	22.7	3.45	2	-	-	-
M1	20190215	Sunny	Calm	Mid-Flood	В	8.4	14:32	9.78	8.12	29.59	22.7	4.11	2	-	-	-
M1	20190215	Sunny	Calm	Mid-Flood	В	8.4	14:33	9.92	8.13	29.8	22.7	4.13	2	-	-	-
M1	20190215	Sunny	Calm	Mid-Flood	M	4.7	14:33	9.87	8.46	29.7	22.6	3.67	4	-	-	-
M1	20190215	Sunny	Calm	Mid-Flood	M	4.7	14:34	9.85	8.16	30.33	22.6	3.67	3	-	-	-
M1	20190215	Sunny	Calm	Mid-Flood	S	1	14:34	9.93	8.26	29.97	22.7	3.28	4	-	-	-
M1	20190215	Sunny	Calm	Mid-Flood	S	1	14:35	9.96	8.09	30.04	22.7	3.35	4	-	-	-
F1	20190215	Sunny	Calm	Mid-Flood	В	8.3	14:00	10.34	8.48	30	22.8	4.41	<2	-	-	-
F1	20190215	Sunny	Calm	Mid-Flood	В	8.3	14:01	10.42	8.36	30.01	22.7	4.4	<2	-	-	-
F1	20190215	Sunny	Calm	Mid-Flood	M	4.7	14:01	10.28	8.14	29.77	22.7	3.98	<2	-	-	-
F1	20190215	Sunny	Calm	Mid-Flood	M	4.7	14:02	10.4	8.32	30.63	22.8	3.9	<2	-	-	-
F1	20190215	Sunny	Calm	Mid-Flood	S	1	14:02	10.43	8.31	30.66	22.6	3.19	<2	-	-	-
F1	20190215	Sunny	Calm	Mid-Flood	S	1	14:03	10.25	8.19	29.93	22.7	3.29	<2	-	-	-
C1	20190218	Cloudy	Moderate	Mid-Ebb	В	10.8	11:06	11.01	8.07	30.86	20	3.62	<2	-	-	-
C1	20190218	Cloudy	Moderate	Mid-Ebb	В	10.8	11:06	11.01	8.34	31.18	20	3.6	<2	-	-	-
C1	20190218	Cloudy	Moderate	Mid-Ebb	M	5.9	11:07	10.82	8.34	30.25	20	3.23	3	-	-	-
C1	20190218	Cloudy	Moderate	Mid-Ebb	M	5.9	11:07	10.68	8.47	29.81	19.8	3.31	3	-	-	-
C1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:08	10.81	8.04	30.01	19.8	2.59	3	-	-	-
C1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:08	10.65	8.24	30.35	19.8	2.6	3	-	-	-
B1	20190218	Cloudy	Moderate	Mid-Ebb	В	4.4	11:34	9.51	8.26	31.35	19.8	3.93	3	-	-	-
B1	20190218	Cloudy	Moderate	Mid-Ebb	В	4.4	11:34	9.68	8.01	31.24	20	3.99	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:35	9.55	8.36	31.55	20	2.68	3	-	-	-
B1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:35	9.6	8.13	29.72	19.8	2.68	3	-	-	-
B2	20190218	Cloudy	Moderate	Mid-Ebb	В	4.5	11:49	9.73	8.49	31.61	19.9	3.87	2	-	-	-
B2	20190218	Cloudy	Moderate	Mid-Ebb	В	4.5	11:49	9.61	8.17	30.25	19.8	3.88	2	-	-	-
B2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:50	9.72	8.33	29.73	20	2.51	2	-	-	-
B2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:50	9.82	8.29	31.41	20	2.44	2	-	-	-
CR2	20190218	Cloudy	Moderate	Mid-Ebb	В	9.4	11:52	10.66	8.34	31.3	19.8	3.99	2	-	-	-
CR2	20190218	Cloudy	Moderate	Mid-Ebb	В	9.4	11:52	10.65	8.24	30.53	20	4.01	2	-	-	-
CR2	20190218	Cloudy	Moderate	Mid-Ebb	M	5.2	11:53	10.56	8.32	31.57	19.9	3.45	<2	-	-	-
CR2	20190218	Cloudy	Moderate	Mid-Ebb	M	5.2	11:53	10.49	8.41	30.84	19.8	3.36	<2	-	-	-
CR2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:54	10.52	8.4	30.59	20	2.71	3	-	-	-
CR2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:54	10.55	8.49	30.89	19.8	2.72	2	-	-	-
CR1	20190218	Cloudy	Moderate	Mid-Ebb	В	8.6	12:08	11.33	8.46	30.93	19.8	3.58	2	-	-	-
CR1	20190218	Cloudy	Moderate	Mid-Ebb	В	8.6	12:08	11.51	8.26	30.4	20	3.52	2	-	-	-
CR1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.8	12:09	11.6	8.2	29.94	19.9	3.22	2	-	-	-
CR1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.8	12:09	11.58	8.23	30.9	20	3.32	2	-	-	-
CR1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:10	11.52	8.15	30.71	20	2.72	2	-	-	-
CR1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:10	11.55	8.33	30.99	20	2.66	<2	-	-	-
В3	20190218	Cloudy	Moderate	Mid-Ebb	В	4.3	12:12	10.65	8.4	31.45	19.8	3.63	5	-	-	-
В3	20190218	Cloudy	Moderate	Mid-Ebb	В	4.3	12:12	10.57	8.25	31.67	19.8	3.73	6	-	-	-
В3	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:13	10.58	8.02	31.1	19.9	2.89	4	-	-	-
В3	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:13	10.48	8.43	31.58	19.8	2.96	3	-	-	-
B4	20190218	Cloudy	Moderate	Mid-Ebb	В	4.4	12:22	9.63	8.26	30.33	20	3.73	4	-	-	-
B4	20190218	Cloudy	Moderate	Mid-Ebb	В	4.4	12:23	9.44	8.41	31.27	19.9	3.64	4	-	-	-
B4	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:23	9.51	8.48	30.02	19.9	2.64	3	-	-	-
B4	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:24	9.32	8.38	29.77	19.9	2.74	2	-	-	-
C2	20190218	Cloudy	Moderate	Mid-Ebb	В	8.5	12:33	10.85	8.4	30.95	20	3.59	<2	-	-	-
C2	20190218	Cloudy	Moderate	Mid-Ebb	В	8.5	12:34	10.85	8.43	30.2	20	3.53	<2	-	-	-
C2	20190218	Cloudy	Moderate	Mid-Ebb	M	4.8	12:34	10.96	8.31	30.94	19.9	3.17	2	-	-	-
C2	20190218	Cloudy	Moderate	Mid-Ebb	M	4.8	12:35	10.89	8.49	29.74	19.9	3.27	2	-	-	-
C2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:35	10.99	8.38	30.28	19.8	2.64	3	-	-	-
C2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:36	11.13	8.09	30.25	20	2.73	2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190218	Cloudy	Moderate	Mid-Ebb	В	8.1	12:58	10.62	8.19	31.61	20	3.67	<2	-	-	-
F1	20190218	Cloudy	Moderate	Mid-Ebb	В	8.1	12:59	10.43	8.29	30.64	19.8	3.58	2	-	-	-
F1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.6	12:59	10.43	8.17	30.27	20	3.4	2	-	-	-
F1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.6	13:00	10.52	8.07	31.64	19.8	3.4	<2	-	-	-
F1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	13:00	10.45	8.16	31.55	20	2.55	2	-	-	-
F1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	13:01	10.41	8.06	30.66	19.8	2.47	<2	-	-	-
M1	20190218	Cloudy	Moderate	Mid-Ebb	В	8.3	13:27	11.33	8.24	29.83	19.8	3.86	2	-	-	-
M1	20190218	Cloudy	Moderate	Mid-Ebb	В	8.3	13:28	11.17	8.09	30.78	20	3.81	2	-	-	-
M1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.7	13:28	11.1	8.47	31.43	20	3.14	2	-	-	-
M1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.7	13:29	11.27	8.19	31.29	19.9	3.13	3	-	-	-
M1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	13:29	11.12	8.17	30.25	19.9	2.95	<2	-	-	-
M1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	13:30	11.2	8.19	31.33	20	3	2	-	-	-
H1	20190218	Cloudy	Moderate	Mid-Ebb	В	7.9	12:34	9.54	8.04	31.59	19.9	3.69	2	-	-	-
H1	20190218	Cloudy	Moderate	Mid-Ebb	В	7.9	12:35	9.7	8.46	30.72	19.9	3.67	2	-	-	-
H1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.5	12:35	9.56	8.48	30.65	20	3	2	-	-	-
H1	20190218	Cloudy	Moderate	Mid-Ebb	M	4.5	12:36	9.46	8.2	31.04	19.9	2.9	4	-	-	-
H1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:36	9.53	8.32	31.68	19.8	2.8	4	-	-	-
H1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	12:37	9.62	8.09	31	19.9	2.78	5	-	-	-
C2	20190218	Drizzle	Moderate	Mid-Flood	В	8.8	15:11	9.89	8.07	30.74	19.8	3.92	<2	-	-	-
C2	20190218	Drizzle	Moderate	Mid-Flood	В	8.8	15:12	9.79	8.07	30.87	19.8	3.96	<2	-	-	-
C2	20190218	Drizzle	Moderate	Mid-Flood	M	4.9	15:13	9.59	8.12	29.95	20	3.43	<2	-	-	-
C2	20190218	Drizzle	Moderate	Mid-Flood	M	4.9	15:13	9.52	8.1	30.34	20	3.33	<2	-	-	-
C2	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:14	9.65	8.5	30.52	19.9	2.77	<2	-	-	-
C2	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:14	9.47	8.42	31.28	19.8	2.72	<2	-	-	-
C1	20190218	Drizzle	Moderate	Mid-Flood	В	11.5	15:19	9.83	8.07	31.44	19.9	3.97	<2	-	-	-
C1	20190218	Drizzle	Moderate	Mid-Flood	В	11.5	15:19	9.76	8.25	31.67	19.8	4.01	<2	-	-	-
C1	20190218	Drizzle	Moderate	Mid-Flood	M	6.3	15:20	9.93	8.24	29.71	19.9	3.34	<2	-	-	-
C1	20190218	Drizzle	Moderate	Mid-Flood	M	6.3	15:20	9.75	8.35	30.38	20	3.44	<2	-	-	-
C1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:21	9.65	8.45	30.12	19.8	3	2	-	-	-
C1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:21	9.47	8.09	31.28	20	3.02	2	-	-	-
CR1	20190218	Drizzle	Moderate	Mid-Flood	В	9.3	15:27	9.9	8.42	30.57	20	3.61	2	-	-	-
CR1	20190218	Drizzle	Moderate	Mid-Flood	В	9.3	15:27	9.82	8.45	30.12	19.9	3.55	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190218	Drizzle	Moderate	Mid-Flood	M	5.2	15:28	9.92	8.47	30.59	19.9	3.28	5	-	-	-
CR1	20190218	Drizzle	Moderate	Mid-Flood	M	5.2	15:28	10.12	8.43	30.93	20	3.27	4	-	-	-
CR1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:29	10.03	8.07	30.91	20	2.86	4	-	-	-
CR1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:29	10.07	8.01	29.74	20	2.77	3	-	-	-
B1	20190218	Drizzle	Moderate	Mid-Flood	В	4.7	15:48	10.3	8.25	31.57	19.9	3.95	<2	-	-	-
B1	20190218	Drizzle	Moderate	Mid-Flood	В	4.7	15:48	10.24	8.04	30.6	19.9	4.03	<2	-	-	-
B1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:49	10.19	8.44	30.89	20	3	<2	-	-	-
B1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:49	10.01	8.27	30.03	19.8	2.9	<2	-	-	-
B2	20190218	Drizzle	Moderate	Mid-Flood	В	4.8	16:03	11.1	8.23	30.39	19.8	3.99	2	-	-	-
B2	20190218	Drizzle	Moderate	Mid-Flood	В	4.8	16:03	11.2	8.17	30.69	19.9	4.03	3	-	-	-
B2	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:04	11.17	8.45	30.21	19.8	2.71	2	-	-	-
B2	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:04	11.34	8.33	29.82	19.8	2.79	2	-	-	-
В3	20190218	Drizzle	Moderate	Mid-Flood	В	4.7	16:28	11.04	8.33	30.96	19.8	3.7	<2	-	-	-
В3	20190218	Drizzle	Moderate	Mid-Flood	В	4.7	16:28	11.08	8.04	30.22	19.8	3.73	<2	-	-	-
В3	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:29	10.99	8.21	31.66	19.8	2.9	<2	-	-	-
В3	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:29	11.18	8.32	31.64	20	2.87	<2	-	-	-
CR2	20190218	Drizzle	Moderate	Mid-Flood	В	9.7	16:35	11.26	8.22	30.84	19.8	3.65	5	-	-	-
CR2	20190218	Drizzle	Moderate	Mid-Flood	В	9.7	16:35	11.4	8.04	31.4	19.8	3.69	5	-	-	-
CR2	20190218	Drizzle	Moderate	Mid-Flood	M	5.4	16:36	11.35	8.34	29.98	19.8	3.01	3	-	-	-
CR2	20190218	Drizzle	Moderate	Mid-Flood	M	5.4	16:37	11.15	8.18	30.92	20	2.95	3	-	-	-
CR2	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:37	11.01	8.24	30.35	19.9	2.51	3	-	-	-
CR2	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:38	10.98	8.26	30.25	20	2.46	2	-	-	-
B4	20190218	Drizzle	Moderate	Mid-Flood	В	4.8	16:39	9.89	8.09	30.45	19.9	3.88	<2	-	-	-
B4	20190218	Drizzle	Moderate	Mid-Flood	В	4.8	16:40	9.81	8.38	30.35	19.9	3.81	<2	-	-	-
B4	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:40	9.77	8.05	29.86	20	2.68	<2	-	-	-
B4	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:41	9.75	8.15	30.27	19.8	2.59	<2	-	-	-
H1	20190218	Drizzle	Moderate	Mid-Flood	В	8.5	16:57	9.83	8.48	30.25	19.9	3.95	2	-	-	-
H1	20190218	Drizzle	Moderate	Mid-Flood	В	8.5	16:58	9.8	8.04	30.37	19.9	3.99	<2	-	-	-
H1	20190218	Drizzle	Moderate	Mid-Flood	M	4.8	16:58	9.64	8.14	29.7	20	3.46	3	-	-	-
H1	20190218	Drizzle	Moderate	Mid-Flood	M	4.8	16:59	9.63	8.47	30.78	19.8	3.36	2	-	-	-
H1	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:59	9.54	8.01	30.61	19.9	2.99	<2	-	-	-
H1	20190218	Drizzle	Moderate	Mid-Flood	S	1	17:00	9.57	8.14	30.99	20	3.05	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190218	Drizzle	Moderate	Mid-Flood	В	8.4	17:10	9.87	8.43	31.44	19.9	3.87	2	-	-	-
F1	20190218	Drizzle	Moderate	Mid-Flood	В	8.4	17:11	9.71	8.5	30.19	19.9	3.84	2	-	-	-
F1	20190218	Drizzle	Moderate	Mid-Flood	M	4.7	17:11	9.8	8.15	30.89	19.9	3.26	3	-	-	-
F1	20190218	Drizzle	Moderate	Mid-Flood	M	4.7	17:12	9.93	8.45	30.25	19.8	3.29	3	-	-	-
F1	20190218	Drizzle	Moderate	Mid-Flood	S	1	17:12	9.9	8.13	30.16	20	2.86	<2	-	-	-
F1	20190218	Drizzle	Moderate	Mid-Flood	S	1	17:13	9.99	8.25	30.98	19.9	2.82	<2	-	-	-
M1	20190218	Drizzle	Moderate	Mid-Flood	В	8.5	17:40	9.81	8.29	30.5	19.9	3.71	4	-	-	-
M1	20190218	Drizzle	Moderate	Mid-Flood	В	8.5	17:41	9.76	8.48	31.14	20	3.62	3	-	-	-
M1	20190218	Drizzle	Moderate	Mid-Flood	M	4.8	17:41	9.85	8.15	31.1	20	3.3	3	-	-	-
M1	20190218	Drizzle	Moderate	Mid-Flood	M	4.8	17:42	9.69	8	30.58	20	3.31	3	-	-	-
M1	20190218	Drizzle	Moderate	Mid-Flood	S	1	17:42	9.85	8.1	31.59	19.9	2.58	2	-	-	-
M1	20190218	Drizzle	Moderate	Mid-Flood	S	1	17:43	9.72	8.21	29.74	19.9	2.49	3	-	-	-
C1	20190220	Cloudy	Light	Mid-Ebb	В	10.6	12:54	10.75	8.11	30.65	20.5	4.78	4	-	-	-
C1	20190220	Cloudy	Light	Mid-Ebb	В	10.6	12:54	10.93	8.13	30.3	20.5	4.7	4	-	-	-
C1	20190220	Cloudy	Light	Mid-Ebb	M	5.8	12:55	10.97	8.46	30.81	20.4	4.43	2	-	-	-
C1	20190220	Cloudy	Light	Mid-Ebb	M	5.8	12:55	10.93	8.02	29.64	20.5	4.52	3	-	-	-
C1	20190220	Cloudy	Light	Mid-Ebb	S	1	12:56	11.08	8.01	30.7	20.5	3.51	3	-	-	-
C1	20190220	Cloudy	Light	Mid-Ebb	S	1	12:56	11.08	8.39	29.9	20.4	3.41	3	-	-	-
F1	20190220	Cloudy	Light	Mid-Ebb	В	7.8	12:56	10.24	8.33	30.63	20.5	4.53	3	-	-	-
F1	20190220	Cloudy	Light	Mid-Ebb	В	7.8	12:56	10.18	8.41	29.7	20.5	4.59	3	-	-	-
F1	20190220	Cloudy	Light	Mid-Ebb	M	4.4	12:57	9.98	8.27	30.22	20.6	4.21	3	-	-	-
F1	20190220	Cloudy	Light	Mid-Ebb	M	4.4	12:57	9.99	8.18	30.26	20.5	4.11	2	-	-	-
F1	20190220	Cloudy	Light	Mid-Ebb	S	1	12:58	9.98	8	30.14	20.5	3.9	2	-	-	-
F1	20190220	Cloudy	Light	Mid-Ebb	S	1	12:58	9.79	8.09	30.63	20.4	3.94	2	-	-	-
B1	20190220	Cloudy	Light	Mid-Ebb	В	4.4	13:16	10.46	8.01	30.61	20.4	4.79	<2	-	-	-
B1	20190220	Cloudy	Light	Mid-Ebb	В	4.4	13:16	10.58	8.31	30.16	20.4	4.75	<2	-	-	-
B1	20190220	Cloudy	Light	Mid-Ebb	S	1	13:17	10.47	8.16	30.55	20.5	3.96	3	-	-	-
B1	20190220	Cloudy	Light	Mid-Ebb	S	1	13:17	10.59	8.36	29.91	20.5	4.06	2	-	-	-
M1	20190220	Cloudy	Light	Mid-Ebb	В	7.9	13:24	10.94	8.38	30.3	20.6	4.95	2	-	-	-
M1	20190220	Cloudy	Light	Mid-Ebb	В	7.9	13:24	10.97	8.36	30.58	20.5	5.05	3	-	-	-
M1	20190220	Cloudy	Light	Mid-Ebb	M	4.5	13:25	10.96	8.29	29.6	20.6	4.03	<2	-	-	-
M1	20190220	Cloudy	Light	Mid-Ebb	M	4.5	13:25	10.76	8.22	31	20.4	3.97	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190220	Cloudy	Light	Mid-Ebb	S	1	13:26	10.81	8.38	30	20.4	3.71	2	-	-	-
M1	20190220	Cloudy	Light	Mid-Ebb	S	1	13:26	10.87	8.27	30.76	20.5	3.62	2	-	-	-
B2	20190220	Cloudy	Light	Mid-Ebb	В	4.5	13:29	10.81	8.22	30.63	20.6	4.71	2	-	-	-
B2	20190220	Cloudy	Light	Mid-Ebb	В	4.5	13:29	10.78	8.03	30.54	20.6	4.61	2	-	-	-
B2	20190220	Cloudy	Light	Mid-Ebb	S	1	13:30	10.86	8.39	30.48	20.4	3.99	3	-	-	-
B2	20190220	Cloudy	Light	Mid-Ebb	S	1	13:30	10.77	8.02	29.87	20.5	4.04	3	-	-	-
C2	20190220	Cloudy	Light	Mid-Ebb	В	8.3	13:49	10.57	8.37	30.26	20.6	4.76	3	-	-	-
C2	20190220	Cloudy	Light	Mid-Ebb	В	8.3	13:49	10.52	8.07	30.39	20.6	4.71	4	-	-	-
C2	20190220	Cloudy	Light	Mid-Ebb	M	4.7	13:50	10.7	8.13	30.2	20.4	4.36	4	-	-	-
C2	20190220	Cloudy	Light	Mid-Ebb	M	4.7	13:50	10.7	8.31	30.24	20.5	4.33	3	-	-	-
C2	20190220	Cloudy	Light	Mid-Ebb	S	1	13:51	10.74	8.35	30.6	20.4	3.55	4	-	-	-
C2	20190220	Cloudy	Light	Mid-Ebb	S	1	13:52	10.75	8.22	30.78	20.5	3.56	4	-	-	-
CR2	20190220	Cloudy	Light	Mid-Ebb	В	9.4	13:56	9.9	8.02	29.85	20.5	4.75	3	-	-	-
CR2	20190220	Cloudy	Light	Mid-Ebb	В	9.4	13:57	9.75	8.29	29.9	20.6	4.66	4	-	-	-
CR2	20190220	Cloudy	Light	Mid-Ebb	M	5.2	13:57	9.92	8.05	29.97	20.4	4.3	2	-	-	-
CR2	20190220	Cloudy	Light	Mid-Ebb	M	5.2	13:58	9.86	8.46	30.82	20.6	4.22	2	-	-	-
CR2	20190220	Cloudy	Light	Mid-Ebb	S	1	13:58	9.91	8.26	30.11	20.6	3.79	2	-	-	-
CR2	20190220	Cloudy	Light	Mid-Ebb	S	1	13:59	9.73	8.46	30.84	20.5	3.82	2	-	-	-
B4	20190220	Cloudy	Light	Mid-Ebb	В	4.4	14:00	9.91	8.07	29.5	20.6	4.61	3	-	-	-
B4	20190220	Cloudy	Light	Mid-Ebb	В	4.4	14:01	9.71	8.06	30.71	20.5	4.64	4	-	-	-
B4	20190220	Cloudy	Light	Mid-Ebb	S	1	14:01	9.9	8.09	30.93	20.4	3.82	4	-	-	-
B4	20190220	Cloudy	Light	Mid-Ebb	S	1	14:02	10.03	8.29	29.85	20.4	3.74	3	-	-	-
В3	20190220	Cloudy	Light	Mid-Ebb	В	4.5	14:10	9.98	8.44	30.09	20.5	4.72	3	-	-	-
В3	20190220	Cloudy	Light	Mid-Ebb	В	4.5	14:11	10.04	8.47	29.83	20.4	4.66	4	-	-	-
В3	20190220	Cloudy	Light	Mid-Ebb	S	1	14:11	10.11	8.45	30.39	20.5	3.5	4	-	-	-
В3	20190220	Cloudy	Light	Mid-Ebb	S	1	14:12	10.15	8.38	30.96	20.6	3.45	2	-	-	-
CR1	20190220	Cloudy	Light	Mid-Ebb	В	8.6	15:57	10.46	8.42	30.36	20.5	4.88	3	-	-	-
CR1	20190220	Cloudy	Light	Mid-Ebb	В	8.6	15:58	10.37	8.37	30.12	20.6	4.92	3	-	-	-
CR1	20190220	Cloudy	Light	Mid-Ebb	M	4.8	15:58	10.44	8.21	29.76	20.4	4.02	3	-	-	-
CR1	20190220	Cloudy	Light	Mid-Ebb	M	4.8	15:59	10.53	8.35	29.77	20.6	4.11	3	-	-	-
CR1	20190220	Cloudy	Light	Mid-Ebb	S	1	15:59	10.57	8.1	31	20.6	3.81	2	-	-	-
CR1	20190220	Cloudy	Light	Mid-Ebb	S	1	16:00	10.45	8.36	29.57	20.5	3.89	2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190220	Cloudy	Light	Mid-Ebb	В	8	14:21	10.18	8.36	30.55	20.5	4.82	4	-	-	-
H1	20190220	Cloudy	Light	Mid-Ebb	В	8	14:22	10.24	8.09	30.93	20.4	4.83	3	-	-	-
H1	20190220	Cloudy	Light	Mid-Ebb	M	4.5	14:22	10.04	8.03	30.17	20.5	4.31	2	-	-	-
H1	20190220	Cloudy	Light	Mid-Ebb	M	4.5	14:23	10.2	8.06	29.52	20.5	4.27	3	-	-	-
H1	20190220	Cloudy	Light	Mid-Ebb	S	1	14:23	10.01	8.43	29.91	20.5	3.95	3	-	-	-
H1	20190220	Cloudy	Light	Mid-Ebb	S	1	14:24	9.97	8.27	29.58	20.4	4	2	-	-	-
C2	20190220	Sunny	Moderate	Mid-Flood	В	8.8	15:47	10.47	8.11	30.03	20.6	5	<2	-	-	-
C2	20190220	Sunny	Moderate	Mid-Flood	В	8.8	15:48	10.44	8.25	30.6	20.4	5.07	<2	-	-	-
C2	20190220	Sunny	Moderate	Mid-Flood	M	4.9	15:49	10.52	8.26	30.43	20.4	4.1	2	-	-	-
C2	20190220	Sunny	Moderate	Mid-Flood	M	4.9	15:49	10.43	8.23	29.66	20.4	4.2	2	-	-	-
C2	20190220	Sunny	Moderate	Mid-Flood	S	1	15:50	10.47	8.41	29.65	20.6	3.59	2	-	-	-
C2	20190220	Sunny	Moderate	Mid-Flood	S	1	15:50	10.36	8.16	30.6	20.6	3.61	3	-	-	-
CR1	20190220	Sunny	Moderate	Mid-Flood	В	9.3	16:02	10.38	8.13	30.59	20.6	4.91	3	-	-	-
CR1	20190220	Sunny	Moderate	Mid-Flood	В	9.3	16:02	10.43	8.17	30.88	20.5	4.89	3	-	-	-
CR1	20190220	Sunny	Moderate	Mid-Flood	M	5.2	16:03	10.43	8.33	30.93	20.6	4.15	4	-	-	-
CR1	20190220	Sunny	Moderate	Mid-Flood	M	5.2	16:03	10.49	8.02	30.08	20.4	4.08	3	-	-	-
CR1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:04	10.53	8.4	30.91	20.4	3.68	3	-	-	-
CR1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:04	10.63	8.16	29.86	20.5	3.58	4	-	-	-
C1	20190220	Sunny	Moderate	Mid-Flood	В	11.5	16:32	10.28	8.2	29.8	20.5	4.81	3	-	-	-
C1	20190220	Sunny	Moderate	Mid-Flood	В	11.5	16:32	10.47	8.09	29.92	20.6	4.82	2	-	-	-
C1	20190220	Sunny	Moderate	Mid-Flood	M	6.3	16:33	10.3	8.27	30.51	20.6	4.44	3	-	-	-
C1	20190220	Sunny	Moderate	Mid-Flood	M	6.3	16:33	10.28	8.23	29.97	20.5	4.4	3	-	-	-
C1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:34	10.17	8.4	29.67	20.4	3.9	2	-	-	-
C1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:34	10.21	8.47	30.76	20.5	3.93	2	-	-	-
B1	20190220	Sunny	Moderate	Mid-Flood	В	4.7	16:58	10.64	8.02	30.93	20.5	4.59	2	-	-	-
B1	20190220	Sunny	Moderate	Mid-Flood	В	4.7	16:58	10.6	8.18	30	20.4	4.51	2	-	-	-
B1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:59	10.57	8.37	30.15	20.4	3.65	4	-	-	-
B1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:59	10.43	8.24	30.26	20.5	3.58	4	-	-	-
B2	20190220	Sunny	Moderate	Mid-Flood	В	4.7	17:13	10.6	8.06	30.82	20.4	4.91	2	-	-	-
B2	20190220	Sunny	Moderate	Mid-Flood	В	4.7	17:13	10.41	8.24	30.95	20.4	4.9	2	-	-	-
B2	20190220	Sunny	Moderate	Mid-Flood	S	1	17:14	10.26	8.38	30.37	20.6	4	4	-	-	-
B2	20190220	Sunny	Moderate	Mid-Flood	S	1	17:14	10.13	8.48	30.85	20.5	4.08	2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190220	Sunny	Moderate	Mid-Flood	В	9.8	17:13	9.92	8.26	30.45	20.5	4.8	3	-	-	-
CR2	20190220	Sunny	Moderate	Mid-Flood	В	9.8	17:13	9.84	8.38	30.81	20.4	4.74	4	-	-	-
CR2	20190220	Sunny	Moderate	Mid-Flood	M	5.4	17:14	10.03	8.23	30.07	20.4	4	2	-	-	-
CR2	20190220	Sunny	Moderate	Mid-Flood	M	5.4	17:14	9.86	8.39	30.43	20.6	4.05	3	-	-	-
CR2	20190220	Sunny	Moderate	Mid-Flood	S	1	17:15	9.9	8.19	30.09	20.5	3.97	3	-	-	-
CR2	20190220	Sunny	Moderate	Mid-Flood	S	1	17:15	9.97	8.3	30.24	20.4	4.05	2	-	-	-
H1	20190220	Sunny	Moderate	Mid-Flood	В	8.7	17:28	10.2	8.07	29.91	20.5	4.55	6	-	-	-
H1	20190220	Sunny	Moderate	Mid-Flood	В	8.7	17:29	10.08	8.07	30	20.5	4.62	6	-	-	-
H1	20190220	Sunny	Moderate	Mid-Flood	M	4.9	17:29	10.27	8.43	30.53	20.6	4.18	6	-	-	-
H1	20190220	Sunny	Moderate	Mid-Flood	M	4.9	17:30	10.44	8.3	29.53	20.6	4.08	6	-	-	-
H1	20190220	Sunny	Moderate	Mid-Flood	S	1	17:30	10.64	8.46	30.12	20.6	3.55	4	-	-	-
H1	20190220	Sunny	Moderate	Mid-Flood	S	1	17:31	10.75	8.36	29.52	20.6	3.58	4	-	-	-
В3	20190220	Sunny	Moderate	Mid-Flood	В	4.8	17:37	10.24	8.24	29.66	20.6	4.99	3	-	-	-
В3	20190220	Sunny	Moderate	Mid-Flood	В	4.8	17:38	10.32	8.41	29.59	20.5	5.01	4	-	-	-
В3	20190220	Sunny	Moderate	Mid-Flood	S	1	17:38	10.35	8.24	30.09	20.6	3.55	3	-	-	-
В3	20190220	Sunny	Moderate	Mid-Flood	S	1	17:39	10.28	8.33	30.97	20.4	3.52	4	-	-	-
B4	20190220	Sunny	Moderate	Mid-Flood	В	4.8	17:48	10.74	8.12	29.69	20.4	4.59	2	-	-	-
B4	20190220	Sunny	Moderate	Mid-Flood	В	4.8	17:49	10.87	8.37	30.77	20.4	4.52	3	-	-	-
B4	20190220	Sunny	Moderate	Mid-Flood	S	1	17:49	11.07	8.26	30.11	20.4	3.57	3	-	-	-
B4	20190220	Sunny	Moderate	Mid-Flood	S	1	17:50	11.22	8.13	30.26	20.5	3.66	2	-	-	-
M1	20190220	Sunny	Moderate	Mid-Flood	В	8.5	18:12	10.53	8.05	30.8	20.5	4.63	3	-	-	-
M1	20190220	Sunny	Moderate	Mid-Flood	В	8.5	18:13	10.44	8.4	30.95	20.6	4.61	3	-	-	-
M1	20190220	Sunny	Moderate	Mid-Flood	M	4.8	18:13	10.32	8.01	30.88	20.4	4.43	3	-	-	-
M1	20190220	Sunny	Moderate	Mid-Flood	M	4.8	18:14	10.2	8.31	30.67	20.6	4.52	3	-	-	-
M1	20190220	Sunny	Moderate	Mid-Flood	S	1	18:14	10.19	8.49	30.81	20.6	3.5	4	-	-	-
M1	20190220	Sunny	Moderate	Mid-Flood	S	1	18:15	9.99	8.05	30.01	20.6	3.43	4	-	-	-
F1	20190220	Sunny	Moderate	Mid-Flood	В	8.4	18:16	10.19	8.48	29.71	20.5	4.85	3	-	-	-
F1	20190220	Sunny	Moderate	Mid-Flood	В	8.4	18:17	10.3	8.35	30.04	20.5	4.89	3	-	-	-
F1	20190220	Sunny	Moderate	Mid-Flood	M	4.7	18:17	10.23	8.26	29.75	20.6	4.05	2	-	-	-
F1	20190220	Sunny	Moderate	Mid-Flood	M	4.7	18:18	10.4	8.01	29.88	20.6	4.13	2	-	-	-
F1	20190220	Sunny	Moderate	Mid-Flood	S	1	18:18	10.43	8.17	29.91	20.6	3.8	2	-	-	-
F1	20190220	Sunny	Moderate	Mid-Flood	S	1	18:19	10.43	8.12	30.2	20.5	3.83	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B1	20190222	Cloudy	Light	Mid-Flood	В	4.8	9:55	13.35	8.91	29.75	20.6	4.47	<2	-	-	-
B1	20190222	Cloudy	Light	Mid-Flood	В	4.8	9:55	14.06	8.83	30.59	21.1	4.39	<2	-	-	-
B1	20190222	Cloudy	Light	Mid-Flood	S	1	9:56	12.89	8.95	32.6	21.1	3.57	<2	-	-	-
B1	20190222	Cloudy	Light	Mid-Flood	S	1	9:56	13.43	8.96	32.2	20.8	3.49	<2	-	-	-
B2	20190222	Cloudy	Light	Mid-Flood	В	4.9	10:09	13.77	8.87	32.01	20.9	4.23	2	-	-	-
B2	20190222	Cloudy	Light	Mid-Flood	В	4.9	10:09	12.08	8.94	31.9	21.1	4.14	3	-	-	-
B2	20190222	Cloudy	Light	Mid-Flood	S	1	10:10	14.01	8.94	30.74	21	3.86	3	-	-	-
B2	20190222	Cloudy	Light	Mid-Flood	S	1	10:10	12.59	8.89	31.1	20.6	3.89	3	-	-	-
В3	20190222	Cloudy	Light	Mid-Flood	В	5.3	10:32	13.75	8.83	30.52	20.9	4.46	3	-	-	-
В3	20190222	Cloudy	Light	Mid-Flood	В	5.3	10:32	13.64	8.84	31.42	21.1	4.44	3	-	-	-
В3	20190222	Cloudy	Light	Mid-Flood	S	1	10:33	13.4	8.87	32.73	20.7	3.75	3	-	-	-
В3	20190222	Cloudy	Light	Mid-Flood	S	1	10:33	12.23	8.82	29.84	20.9	3.85	3	-	-	-
B4	20190222	Cloudy	Light	Mid-Flood	В	5.3	10:41	13.99	8.9	29.95	21.2	4.26	<2	-	-	-
B4	20190222	Cloudy	Light	Mid-Flood	В	5.3	10:41	12.87	8.9	31.5	20.9	4.33	<2	-	-	-
B4	20190222	Cloudy	Light	Mid-Flood	S	1	10:42	13.46	8.87	31.23	21.2	3.84	<2	-	-	-
B4	20190222	Cloudy	Light	Mid-Flood	S	1	10:42	12.87	8.83	32.81	20.6	3.85	<2	-	-	-
C1	20190222	Cloudy	Light	Mid-Flood	В	10.8	8:47	12.6	8.82	30.52	21.2	4.09	2	-	-	-
C1	20190222	Cloudy	Light	Mid-Flood	В	10.8	8:47	13.79	8.86	30.15	20.8	4.01	2	-	-	-
C1	20190222	Cloudy	Light	Mid-Flood	M	5.9	8:48	12.21	8.88	30.75	21.1	3.06	2	-	-	-
C1	20190222	Cloudy	Light	Mid-Flood	M	5.9	8:48	13.12	8.91	32.56	21.2	3.15	2	-	-	-
C1	20190222	Cloudy	Light	Mid-Flood	S	1	8:49	12.83	8.87	30.67	21.2	3.94	<2	-	-	-
C1	20190222	Cloudy	Light	Mid-Flood	S	1	8:49	13.58	8.89	29.12	20.9	3.84	<2	-	-	-
C2	20190222	Cloudy	Light	Mid-Flood	В	7.5	9:25	12.23	8.97	29.18	21	4.45	2	-	-	-
C2	20190222	Cloudy	Light	Mid-Flood	В	7.5	9:25	12.89	8.82	31.18	21	4.4	2	-	-	-
C2	20190222	Cloudy	Light	Mid-Flood	M	4.25	9:26	12.75	8.92	32.01	21	3.48	3	-	-	-
C2	20190222	Cloudy	Light	Mid-Flood	M	4.25	9:26	12.15	8.93	30.86	21.1	3.4	2	-	-	-
C2	20190222	Cloudy	Light	Mid-Flood	S	1	9:27	12.36	8.85	29.67	21	3.86	4	-	-	-
C2	20190222	Cloudy	Light	Mid-Flood	S	1	9:27	12.13	8.9	29.45	21.2	3.95	3	-	-	-
F1	20190222	Cloudy	Light	Mid-Flood	В	6.9	11:09	12.37	8.88	30.38	20.6	4.21	5	-	-	-
F1	20190222	Cloudy	Light	Mid-Flood	В	6.9	11:09	13.48	8.86	31.85	20.7	4.28	4	-	-	-
F1	20190222	Cloudy	Light	Mid-Flood	M	3.95	11:10	12.7	8.89	29.45	20.6	3.24	4	-	-	-
F1	20190222	Cloudy	Light	Mid-Flood	M	3.95	11:10	12.07	8.92	32.01	21	3.18	5	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190222	Cloudy	Light	Mid-Flood	S	1	11:11	12.62	8.96	30.63	20.7	3.8	3	-	-	-
F1	20190222	Cloudy	Light	Mid-Flood	S	1	11:11	13.61	8.91	31.04	20.8	3.77	4	-	-	-
H1	20190222	Cloudy	Light	Mid-Flood	В	7	10:18	13.61	8.83	32.56	21.2	4.5	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Flood	В	7	10:18	13.01	8.92	32.63	20.9	4.56	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Flood	M	4	10:19	14.07	8.97	30.97	20.9	3.4	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Flood	M	4	10:19	13.83	8.94	32.07	21.2	3.5	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Flood	S	1	10:20	12.74	8.86	32.68	21.2	3.99	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Flood	S	1	10:20	12.38	8.96	30.96	20.9	3.9	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Flood	В	8.6	11:40	13.29	8.92	32.04	21	4.22	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Flood	В	8.6	11:40	12.25	8.89	32.02	20.9	4.28	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Flood	M	4.8	11:41	13.82	8.86	30.95	20.8	3.03	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Flood	M	4.8	11:41	12.38	8.85	32.39	21.1	3.01	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Flood	S	1	11:42	13.56	8.82	31.87	21.1	4	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Flood	S	1	11:42	12.34	8.95	30.75	21	4.01	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Flood	В	12	8:47	13.06	8.83	30.12	20.8	4.23	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Flood	В	12	8:47	13.09	8.84	29.46	21.2	4.3	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Flood	M	6.5	8:48	12.66	8.85	31.8	20.8	3.46	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Flood	M	6.5	8:48	13.02	8.94	31.22	20.8	3.54	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Flood	S	1	8:49	12.27	8.88	31.65	20.8	3.77	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Flood	S	1	8:49	13.94	8.93	32.31	20.8	3.7	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Flood	В	10.6	9:58	12.85	8.82	31.67	21.2	4.18	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Flood	В	10.6	9:58	13.03	8.82	29.09	20.7	4.14	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Flood	M	5.8	9:59	13.29	8.82	30.49	20.7	3.5	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Flood	M	5.8	9:59	13.71	8.86	30.85	21	3.42	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Flood	S	1	10:00	13.59	8.94	32.3	20.6	3.82	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Flood	S	1	10:00	13.45	8.88	30.95	20.9	3.77	<2	-	-	-
B1	20190222	Cloudy	Light	Mid-Ebb	В	4.8	13:14	13.45	8.86	32.53	21.1	4.03	<2	-	-	-
B1	20190222	Cloudy	Light	Mid-Ebb	В	4.8	13:14	12.44	8.85	32.37	21.1	3.95	<2	-	-	-
B1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:15	13.4	8.85	31.16	20.9	3.52	<2	-	-	-
B1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:15	12.1	8.83	29.89	21.1	3.47	<2	-	-	-
B2	20190222	Cloudy	Light	Mid-Ebb	В	4.8	13:28	12.11	8.85	32.28	20.9	4.2	<2	-	-	-
B2	20190222	Cloudy	Light	Mid-Ebb	В	4.8	13:28	13.66	8.82	32.67	21.2	4.19	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B2	20190222	Cloudy	Light	Mid-Ebb	S	1	13:29	13.48	8.95	31.14	20.8	3.79	<2	-	-	-
B2	20190222	Cloudy	Light	Mid-Ebb	S	1	13:29	12.55	8.9	29.72	21.2	3.73	<2	-	-	-
В3	20190222	Cloudy	Light	Mid-Ebb	В	4.8	14:01	12.94	8.97	30.6	21.2	4.03	<2	-	-	-
В3	20190222	Cloudy	Light	Mid-Ebb	В	4.8	14:01	13	8.94	32.74	20.7	4.01	<2	-	-	-
В3	20190222	Cloudy	Light	Mid-Ebb	S	1	14:02	13.77	8.86	30.52	21.2	3.68	<2	-	-	-
В3	20190222	Cloudy	Light	Mid-Ebb	S	1	14:02	13.87	8.83	32.77	20.6	3.64	<2	-	-	-
B4	20190222	Cloudy	Light	Mid-Ebb	В	5	14:06	12.33	8.83	31.4	21	4.25	<2	-	-	-
B4	20190222	Cloudy	Light	Mid-Ebb	В	5	14:06	13.49	8.96	29.11	20.7	4.24	<2	-	-	-
B4	20190222	Cloudy	Light	Mid-Ebb	S	1	14:07	12.81	8.93	32.43	21.2	3.98	<2	-	-	-
B4	20190222	Cloudy	Light	Mid-Ebb	S	1	14:07	12.23	8.83	32.84	21.2	4.03	<2	-	-	-
C1	20190222	Cloudy	Light	Mid-Ebb	В	9.3	13:16	12.93	8.95	31.69	21	4.44	<2	-	-	-
C1	20190222	Cloudy	Light	Mid-Ebb	В	9.3	13:16	12.92	8.87	30.94	20.8	4.54	<2	-	-	-
C1	20190222	Cloudy	Light	Mid-Ebb	M	5.15	13:17	12.24	8.84	30.55	20.9	3.2	2	-	-	-
C1	20190222	Cloudy	Light	Mid-Ebb	M	5.15	13:17	13.77	8.94	32.42	21.1	3.26	<2	-	-	-
C1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:18	13.23	8.91	30.71	20.6	3.64	<2	-	-	-
C1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:18	13.88	8.96	31	20.9	3.55	<2	-	-	-
C2	20190222	Cloudy	Light	Mid-Ebb	В	6.9	14:18	12.71	8.93	30.25	21	4.24	2	-	-	-
C2	20190222	Cloudy	Light	Mid-Ebb	В	6.9	14:18	14.01	8.89	31.48	20.6	4.28	2	-	-	-
C2	20190222	Cloudy	Light	Mid-Ebb	M	3.95	14:19	13.91	8.88	31.31	21.1	3.38	<2	-	-	-
C2	20190222	Cloudy	Light	Mid-Ebb	M	3.95	14:19	13.2	8.86	31.63	20.8	3.43	<2	-	-	-
C2	20190222	Cloudy	Light	Mid-Ebb	S	1	14:20	12.56	8.94	30.68	21	3.77	2	-	-	-
C2	20190222	Cloudy	Light	Mid-Ebb	S	1	14:20	12.79	8.9	32.73	20.6	3.67	<2	-	-	-
F1	20190222	Cloudy	Light	Mid-Ebb	В	7.2	14:40	12.18	8.97	32.34	20.8	4.28		-	-	-
F1	20190222	Cloudy	Light	Mid-Ebb	В	7.2	14:40	12.35	8.88	30.63	21	4.26	2	-	-	-
F1	20190222	Cloudy	Light	Mid-Ebb	M	4.1	14:41	13.1	8.88	29.67	20.7	3.34	2	-	-	-
F1	20190222	Cloudy	Light	Mid-Ebb	M	4.1	14:41	13.3	8.91	30.63	20.7	3.29	2	-	-	-
F1	20190222	Cloudy	Light	Mid-Ebb	S	1	14:42	12.7	8.97	30.64	21.2	3.53	<2	-	-	-
F1	20190222	Cloudy	Light	Mid-Ebb	S	1	14:42	12.62	8.85	29.75	21.2	3.44	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Ebb	В	6.3	13:52	12.47	8.92	32.22	21.1	4.05	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Ebb	В	6.3	13:52	13.13	8.82	31.6	21.1	3.96	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Ebb	M	3.65	13:53	12.21	8.93	29.71	20.6	3.1	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Ebb	M	3.65	13:53	13.53	8.83	31.21	20.7	3.19	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:54	12.05	8.9	32.29	21	3.8	<2	-	-	-
H1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:54	12.35	8.85	32.06	20.9	3.84	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Ebb	В	8.5	15:55	12.97	8.89	30.28	21.1	4.16	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Ebb	В	8.5	15:55	12.1	8.92	31.14	20.7	4.12	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Ebb	M	4.75	15:56	12.43	8.97	30.99	20.6	3.1	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Ebb	M	4.75	15:56	12.06	8.94	32.4	21.1	3.06	<2	-	-	-
M1	20190222	Cloudy	Light	Mid-Ebb	S	1	15:57	13.81	8.86	32.06	21.2	3.64	2	-	-	-
M1	20190222	Cloudy	Light	Mid-Ebb	S	1	15:57	13.02	8.91	32.54	21.2	3.58	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Ebb	В	11	15:15	13.98	8.9	31.4	20.7	4.11	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Ebb	В	11	15:15	13.07	8.9	32.2	20.9	4.09	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Ebb	M	6	15:16	13.01	8.84	29.5	20.6	3.27	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Ebb	M	6	15:16	13.23	8.82	29.55	21	3.25	<2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Ebb	S	1	15:17	13.72	8.87	30.25	20.7	3.92	2	-	-	-
CR1	20190222	Cloudy	Light	Mid-Ebb	S	1	15:17	12.7	8.87	32.68	21.1	3.97	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Ebb	В	9.6	15:05	12.54	8.94	30.5	20.6	4.2	3	-	-	-
CR2	20190222	Cloudy	Light	Mid-Ebb	В	9.6	15:05	13.44	8.88	32.9	21.2	4.18	2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Ebb	M	5.3	15:06	12.06	8.95	31.32	21.2	3.34	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Ebb	M	5.3	15:06	12.55	8.91	30.6	21.2	3.28	<2	-	-	-
CR2	20190222	Cloudy	Light	Mid-Ebb	S	1	15:07	12.83	8.89	29.11	20.7	3.57	3	-	-	-
CR2	20190222	Cloudy	Light	Mid-Ebb	S	1	15:07	12.27	8.86	29.28	20.8	3.63	2	-	-	-
B1	20190225	Cloudy	Light	Mid-Flood	В	5.2	10:22	8.69	8.76	30.36	20.2	3.55	4	-	-	-
B1	20190225	Cloudy	Light	Mid-Flood	В	5.2	10:22	8.92	8.82	32.06	19.9	3.45	4	-	-	-
B1	20190225	Cloudy	Light	Mid-Flood	S	1	10:23	8.78	8.72	32.94	20	3.23	3	-	-	-
B1	20190225	Cloudy	Light	Mid-Flood	S	1	10:23	8.84	8.66	31.84	19.9	3.21	3	-	-	-
B2	20190225	Cloudy	Light	Mid-Flood	В	4.7	10:35	8.61	8.68	30.96	20	3.66	4	-	-	-
B2	20190225	Cloudy	Light	Mid-Flood	В	4.7	10:35	8.76	8.65	33.62	19.8	3.66	4	-	-	-
B2	20190225	Cloudy	Light	Mid-Flood	S	1	10:36	8.72	8.62	30.13	19.8	3.04	4	-	-	-
B2	20190225	Cloudy	Light	Mid-Flood	S	1	10:36	8.98	8.79	30.07	20	3.07	4	-	-	-
В3	20190225	Cloudy	Light	Mid-Flood	В	5.2	10:36	8.56	8.67	32.16	20	3.92	5	-	-	-
В3	20190225	Cloudy	Light	Mid-Flood	В	5.2	10:36	8.54	8.83	32.59	20	3.98	6	-	-	-
В3	20190225	Cloudy	Light	Mid-Flood	S	1	10:37	8.67	8.64	32.98	19.9	3.33	4	-	-	-
В3	20190225	Cloudy	Light	Mid-Flood	S	1	10:37	8.94	8.78	32.44	20.1	3.4	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B4	20190225	Cloudy	Light	Mid-Flood	В	5.5	10:49	8.73	8.85	31.19	20.2	3.62	4	-	-	-
B4	20190225	Cloudy	Light	Mid-Flood	В	5.5	10:49	8.71	8.66	33.28	20.1	3.61	4	-	-	-
B4	20190225	Cloudy	Light	Mid-Flood	S	1	10:50	8.74	8.83	31.71	20	3.46	4	-	-	-
B4	20190225	Cloudy	Light	Mid-Flood	S	1	10:50	8.83	8.65	31.3	20.2	3.41	3	-	-	-
C1	20190225	Cloudy	Light	Mid-Flood	В	11	9:57	8.94	8.8	33.4	20.1	3.85	6	-	-	-
C1	20190225	Cloudy	Light	Mid-Flood	В	11	9:57	8.9	8.71	33.36	19.9	3.82	6	-	-	-
C1	20190225	Cloudy	Light	Mid-Flood	M	6	9:58	8.91	8.63	33.82	19.8	2.76	4	-	-	-
C1	20190225	Cloudy	Light	Mid-Flood	M	6	9:58	8.77	8.8	33.4	19.8	2.67	6	-	-	-
C1	20190225	Cloudy	Light	Mid-Flood	S	1	9:59	8.86	8.82	33.52	20.2	3.28	5	-	-	-
C1	20190225	Cloudy	Light	Mid-Flood	S	1	9:59	8.6	8.72	33.74	19.8	3.21	4	-	-	-
C2	20190225	Cloudy	Light	Mid-Flood	В	7.2	9:03	8.76	8.67	33.44	19.8	3.69	4	-	-	-
C2	20190225	Cloudy	Light	Mid-Flood	В	7.2	9:03	8.77	8.72	33.23	20	3.67	4	-	-	-
C2	20190225	Cloudy	Light	Mid-Flood	M	4.1	9:04	8.72	8.83	31.67	19.8	2.85	4	-	-	-
C2	20190225	Cloudy	Light	Mid-Flood	M	4.1	9:04	8.64	8.77	31.9	20	2.92	5	-	-	-
C2	20190225	Cloudy	Light	Mid-Flood	S	1	9:05	8.85	8.87	32.04	20.1	3.24	6	-	-	-
C2	20190225	Cloudy	Light	Mid-Flood	S	1	9:05	8.62	8.77	31.08	20.2	3.19	6	-	-	-
F1	20190225	Cloudy	Light	Mid-Flood	В	7.1	9:28	8.77	8.72	31.31	19.9	3.92	5	-	-	-
F1	20190225	Cloudy	Light	Mid-Flood	В	7.1	9:28	8.85	8.81	33.33	20.2	3.98	6	-	-	-
F1	20190225	Cloudy	Light	Mid-Flood	M	4.1	9:29	8.82	8.63	30.16	20.2	2.78	8	-	-	-
F1	20190225	Cloudy	Light	Mid-Flood	M	4.1	9:29	8.84	8.77	30.55	20.1	2.8	7	-	-	-
F1	20190225	Cloudy	Light	Mid-Flood	S	1	9:30	8.6	8.83	33	20.1	3.2	8	-	-	-
F1	20190225	Cloudy	Light	Mid-Flood	S	1	9:30	8.63	8.76	33.24	20	3.24	9	-	-	-
H1	20190225	Cloudy	Light	Mid-Flood	В	6.6	10:59	8.68	8.76	31.13	20.1	3.74	2	-	-	-
H1	20190225	Cloudy	Light	Mid-Flood	В	6.6	10:59	8.71	8.63	31.13	20.2	3.83	4	-	-	-
H1	20190225	Cloudy	Light	Mid-Flood	M	3.8	11:00	8.74	8.84	31.2	20	2.79	6	-	-	-
H1	20190225	Cloudy	Light	Mid-Flood	M	3.8	11:00	8.94	8.73	30.1	20	2.73	5	-	-	-
H1	20190225	Cloudy	Light	Mid-Flood	S	1	11:01	8.83	8.75	33.02	19.8	3.35	6	-	-	-
H1	20190225	Cloudy	Light	Mid-Flood	S	1	11:01	8.58	8.86	33.61	19.9	3.32	6	-	-	-
M1	20190225	Cloudy	Light	Mid-Flood	В	8.2	10:00	8.65	8.64	33.06	20.2	3.59	5	-	-	-
M1	20190225	Cloudy	Light	Mid-Flood	В	8.2	10:00	8.6	8.68	31.56	19.8	3.58	5	-	-	-
M1	20190225	Cloudy	Light	Mid-Flood	M	4.6	10:01	8.89	8.67	32.25	20	2.63	3	-	-	-
M1	20190225	Cloudy	Light	Mid-Flood	M	4.6	10:01	8.77	8.66	31.39	20	2.62	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190225	Cloudy	Light	Mid-Flood	S	1	10:02	8.65	8.86	30.4	20.2	3.37	4	-	-	-
M1	20190225	Cloudy	Light	Mid-Flood	S	1	10:02	8.56	8.87	32.95	20.1	3.37	4	-	-	-
CR1	20190225	Cloudy	Light	Mid-Flood	В	11.1	9:18	8.55	8.85	31.02	19.8	3.85	5	-	-	-
CR1	20190225	Cloudy	Light	Mid-Flood	В	11.1	9:18	8.73	8.74	32.98	19.8	3.93	4	-	-	-
CR1	20190225	Cloudy	Light	Mid-Flood	M	6.1	9:19	8.66	8.79	31.47	20	2.59	6	-	-	-
CR1	20190225	Cloudy	Light	Mid-Flood	M	6.1	9:19	8.88	8.74	30.69	20.2	2.51	5	-	-	-
CR1	20190225	Cloudy	Light	Mid-Flood	S	1	9:20	8.87	8.67	33.24	20.1	3.22	4	-	-	-
CR1	20190225	Cloudy	Light	Mid-Flood	S	1	9:20	8.72	8.63	31.77	19.9	3.13	4	-	-	-
CR2	20190225	Cloudy	Light	Mid-Flood	В	10.6	9:30	8.75	8.63	32.18	19.9	3.88	6	-	-	-
CR2	20190225	Cloudy	Light	Mid-Flood	В	10.6	9:30	8.75	8.66	31.1	19.8	3.86	6	-	-	-
CR2	20190225	Cloudy	Light	Mid-Flood	M	5.8	9:31	8.72	8.65	31.66	20.1	2.87	5	-	-	-
CR2	20190225	Cloudy	Light	Mid-Flood	M	5.8	9:31	8.95	8.69	33.81	19.9	2.79	6	-	-	-
CR2	20190225	Cloudy	Light	Mid-Flood	S	1	9:32	8.7	8.67	32.04	20.1	3.3	6	-	-	-
CR2	20190225	Cloudy	Light	Mid-Flood	S	1	9:32	8.93	8.62	33.86	19.9	3.3	6	-	-	-
B1	20190225	Cloudy	Light	Mid-Ebb	В	5.1	15:18	8.56	8.69	31.58	19.8	3.9	5	-	-	-
B1	20190225	Cloudy	Light	Mid-Ebb	В	5.1	15:18	8.63	8.86	30.52	19.9	3.85	5	-	-	-
B1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:19	8.84	8.78	32.43	20.1	3.21	7	-	-	-
B1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:19	8.7	8.71	31.16	20.2	3.27	7	-	-	-
B2	20190225	Cloudy	Light	Mid-Ebb	В	4.8	15:30	8.95	8.71	33.64	20	3.72	5	-	-	-
B2	20190225	Cloudy	Light	Mid-Ebb	В	4.8	15:30	8.59	8.63	31.55	19.9	3.7	6	-	-	-
B2	20190225	Cloudy	Light	Mid-Ebb	S	1	15:31	8.82	8.75	30.57	20	3.07	6	-	-	-
B2	20190225	Cloudy	Light	Mid-Ebb	S	1	15:31	8.57	8.75	33.77	20.2	3.02	6	-	-	-
В3	20190225	Cloudy	Light	Mid-Ebb	В	3.9	16:12	8.64	8.75	33.61	20	3.87	6	-	-	-
В3	20190225	Cloudy	Light	Mid-Ebb	В	3.9	16:12	8.61	8.69	33.45	20.1	3.77	6	-	-	-
В3	20190225	Cloudy	Light	Mid-Ebb	S	1	16:13	8.91	8.7	32.4	20	3.13	7	-	-	-
В3	20190225	Cloudy	Light	Mid-Ebb	S	1	16:13	8.84	8.77	30.08	20	3.11	6	-	-	-
B4	20190225	Cloudy	Light	Mid-Ebb	В	5.1	16:26	8.84	8.63	31.97	20.1	3.96	5	-	-	-
B4	20190225	Cloudy	Light	Mid-Ebb	В	5.1	16:26	8.7	8.63	32.29	19.8	3.95	5	-	-	-
B4	20190225	Cloudy	Light	Mid-Ebb	S	1	16:27	8.69	8.69	30.19	20.1	3.23	6	-	-	-
B4	20190225	Cloudy	Light	Mid-Ebb	S	1	16:27	8.97	8.84	31.62	20.2	3.27	7	-	-	-
C1	20190225	Cloudy	Light	Mid-Ebb	В	9.8	14:56	8.58	8.64	32.39	19.9	3.82	8	-	-	-
C1	20190225	Cloudy	Light	Mid-Ebb	В	9.8	14:56	8.59	8.82	30.86	20.1	3.79	8	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190225	Cloudy	Light	Mid-Ebb	M	5.4	14:57	8.62	8.87	30.1	19.8	2.91	8	-	-	-
C1	20190225	Cloudy	Light	Mid-Ebb	M	5.4	14:57	8.91	8.73	33.82	20.2	2.99	8	-	-	-
C1	20190225	Cloudy	Light	Mid-Ebb	S	1	14:58	8.98	8.7	33.85	20.1	3.38	7	-	-	-
C1	20190225	Cloudy	Light	Mid-Ebb	S	1	14:58	8.57	8.73	32.28	20.1	3.42	7	-	-	-
C2	20190225	Cloudy	Light	Mid-Ebb	В	7.2	15:56	8.78	8.81	33.87	20.1	3.98	8	-	-	-
C2	20190225	Cloudy	Light	Mid-Ebb	В	7.2	15:56	8.95	8.69	32.67	20	4	8	-	-	-
C2	20190225	Cloudy	Light	Mid-Ebb	M	4.1	15:57	8.71	8.69	30.67	19.9	2.97	8	-	-	-
C2	20190225	Cloudy	Light	Mid-Ebb	M	4.1	15:57	8.67	8.72	32.63	20.2	2.88	8	-	-	-
C2	20190225	Cloudy	Light	Mid-Ebb	S	1	15:58	8.57	8.86	32.2	19.8	3.18	7	-	-	-
C2	20190225	Cloudy	Light	Mid-Ebb	S	1	15:58	8.89	8.78	30.27	20.2	3.22	6	-	-	-
F1	20190225	Cloudy	Light	Mid-Ebb	В	7	15:00	8.56	8.87	33.59	20.1	3.61	8	-	-	-
F1	20190225	Cloudy	Light	Mid-Ebb	В	7	15:00	8.92	8.79	32.1	19.8	3.61	9	-	-	-
F1	20190225	Cloudy	Light	Mid-Ebb	M	4	15:01	8.59	8.68	32.33	19.9	2.73	6	-	-	-
F1	20190225	Cloudy	Light	Mid-Ebb	M	4	15:01	8.91	8.64	33.01	20.2	2.7	7	-	-	-
F1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:02	8.86	8.63	33.03	20.2	3.3	6	-	-	-
F1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:02	8.74	8.81	31.93	20.1	3.29	6	-	-	-
H1	20190225	Cloudy	Light	Mid-Ebb	В	7.2	15:50	8.59	8.86	33.84	20.2	3.69	6	-	-	-
H1	20190225	Cloudy	Light	Mid-Ebb	В	7.2	15:50	8.92	8.72	31.94	20	3.66	6	-	-	-
H1	20190225	Cloudy	Light	Mid-Ebb	M	4.1	15:51	8.88	8.65	33.79	20.2	2.6	4	-	-	-
H1	20190225	Cloudy	Light	Mid-Ebb	M	4.1	15:51	8.57	8.76	31.8	20	2.61	4	-	-	-
H1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:52	8.73	8.85	33.23	19.8	3.18	3	-	-	-
H1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:52	8.92	8.62	32.52	19.8	3.21	3	-	-	-
M1	20190225	Cloudy	Light	Mid-Ebb	В	8.1	15:30	8.62	8.66	31.25	20.2	3.96	6	-	-	-
M1	20190225	Cloudy	Light	Mid-Ebb	В	8.1	15:30	8.75	8.76	32.55	19.8	3.99	7	-	-	-
M1	20190225	Cloudy	Light	Mid-Ebb	M	4.6	15:31	8.59	8.83	32.82	20	2.88	6	-	-	-
M1	20190225	Cloudy	Light	Mid-Ebb	M	4.6	15:31	8.88	8.86	33.6	20.2	2.95	7	-	-	-
M1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:32	8.55	8.74	33.71	20.1	3.32	8	-	-	-
M1	20190225	Cloudy	Light	Mid-Ebb	S	1	15:32	8.94	8.64	30.25	20.1	3.29	8	-	-	-
CR1	20190225	Cloudy	Light	Mid-Ebb	В	11.8	16:14	8.75	8.74	31.04	19.8	3.56	8	-	-	-
CR1	20190225	Cloudy	Light	Mid-Ebb	В	11.8	16:14	8.56	8.85	32.13	20.1	3.61	7	-	-	-
CR1	20190225	Cloudy	Light	Mid-Ebb	M	6.4	16:15	8.58	8.81	31.48	19.9	2.79	8	-	-	-
CR1	20190225	Cloudy	Light	Mid-Ebb	M	6.4	16:15	8.6	8.65	32.02	19.8	2.82	8	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190225	Cloudy	Light	Mid-Ebb	S	1	16:16	8.65	8.84	32.37	20.1	3.39	7	-	-	-
CR1	20190225	Cloudy	Light	Mid-Ebb	S	1	16:16	8.56	8.82	33.01	19.8	3.34	7	-	-	-
CR2	20190225	Cloudy	Light	Mid-Ebb	В	10.2	16:00	8.89	8.76	32.33	20.2	3.74	7	-	-	-
CR2	20190225	Cloudy	Light	Mid-Ebb	В	10.2	16:00	8.88	8.65	30.2	19.8	3.66	7	-	-	-
CR2	20190225	Cloudy	Light	Mid-Ebb	M	5.6	16:01	8.78	8.87	30.16	20.1	2.98	10	-	-	-
CR2	20190225	Cloudy	Light	Mid-Ebb	M	5.6	16:01	8.87	8.83	31.79	19.9	3.08	12	-	-	-
CR2	20190225	Cloudy	Light	Mid-Ebb	S	1	16:02	8.83	8.65	33.05	19.8	3.49	10	-	-	-
CR2	20190225	Cloudy	Light	Mid-Ebb	S	1	16:02	8.72	8.76	30.09	19.8	3.57	10	-	-	-
B1	20190227	Sunny	Light	Mid-Flood	В	4.4	12:58	9.48	9.17	32.68	21.2	3.8	<2	-	-	-
B1	20190227	Sunny	Light	Mid-Flood	В	4.4	12:58	9.02	9.14	31.54	21	3.73	<2	-	-	-
B1	20190227	Sunny	Light	Mid-Flood	S	1	12:59	9.01	9.1	29.36	21.4	3.01	<2	-	-	-
B1	20190227	Sunny	Light	Mid-Flood	S	1	12:59	9.01	9.08	31.58	21.5	3.08	<2	-	-	-
B2	20190227	Sunny	Light	Mid-Flood	В	4.8	13:13	9.61	9.05	32.28	21.3	3.59	<2	-	-	-
B2	20190227	Sunny	Light	Mid-Flood	В	4.8	13:13	9.51	9.14	30.2	21.1	3.67	<2	-	-	-
B2	20190227	Sunny	Light	Mid-Flood	S	1	13:14	9.18	8.96	30.27	21.4	3.5	<2	-	-	-
B2	20190227	Sunny	Light	Mid-Flood	S	1	13:14	9.18	8.98	31.51	21.3	3.57	<2	-	-	-
В3	20190227	Sunny	Light	Mid-Flood	В	4.8	12:47	9.3	9.04	29.94	21	3.89	<2	-	-	-
В3	20190227	Sunny	Light	Mid-Flood	В	4.8	12:47	9.57	9.12	32.19	21	3.84	<2	-	-	-
В3	20190227	Sunny	Light	Mid-Flood	S	1	12:48	9.66	8.95	29.37	21.3	3.23	<2	-	-	-
В3	20190227	Sunny	Light	Mid-Flood	S	1	12:48	9.09	9.15	32.71	21	3.18	<2	-	-	-
B4	20190227	Sunny	Light	Mid-Flood	В	5.3	12:57	9.44	8.98	32.09	21.3	3.69	<2	-	-	-
B4	20190227	Sunny	Light	Mid-Flood	В	5.3	12:57	9.48	9.05	29.88	21.1	3.65	<2	-	-	-
B4	20190227	Sunny	Light	Mid-Flood	S	1	12:58	9.67	8.98	30.09	21.2	3.08	<2	-	-	-
B4	20190227	Sunny	Light	Mid-Flood	S	1	12:58	9.59	8.97	31.58	21.4	3.01	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Flood	В	9	12:31	9.6	8.93	30.96	21.5	3.6	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Flood	В	9	12:31	9.61	9.02	31.14	21.3	3.63	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Flood	M	5	12:32	9.52	9.13	30.81	21	2.79	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Flood	M	5	12:32	9.63	9.17	32.51	21.3	2.72	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Flood	S	1	12:33	9.4	8.92	29.43	21.1	3.21	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Flood	S	1	12:33	8.99	9.11	29.46	21.2	3.26	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Flood	В	7.5	11:11	9.02	8.96	29.86	21	4	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Flood	В	7.5	11:11	8.95	8.96	29.49	21	4.09	<2	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190227	Sunny	Light	Mid-Flood	M	4.25	11:12	9.54	9.11	32.19	21.4	2.73	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Flood	M	4.25	11:12	9.46	9.06	31.18	21.2	2.73	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Flood	S	1	11:13	9.48	9.02	29.87	21.4	3.44	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Flood	S	1	11:13	9.02	8.94	30.87	21	3.51	<2	-	-	-
F1	20190227	Sunny	Light	Mid-Flood	В	7.1	11:41	9.06	9.13	31.5	21.3	3.63	<2	-	-	-
F1	20190227	Sunny	Light	Mid-Flood	В	7.1	11:41	9.56	9.15	30.7	21	3.66	<2	-	-	-
F1	20190227	Sunny	Light	Mid-Flood	M	4.05	11:42	9.41	9	32.8	21.4	2.7	<2	-	-	-
F1	20190227	Sunny	Light	Mid-Flood	M	4.05	11:42	9.21	8.94	31.11	21.4	2.76	<2	-	-	-
F1	20190227	Sunny	Light	Mid-Flood	S	1	11:43	9.38	8.98	33.06	21.2	3.12	<2	-	-	-
F1	20190227	Sunny	Light	Mid-Flood	S	1	11:43	9.17	9.11	33.1	21.3	3.04	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Flood	В	6.9	13:10	8.97	9.05	31	21.1	3.61	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Flood	В	6.9	13:10	9.13	9.17	29.42	21.2	3.57	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Flood	M	3.95	13:11	9.15	9.03	31.67	21.5	2.53	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Flood	M	3.95	13:11	9.64	9.04	30.66	21.3	2.56	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Flood	S	1	13:12	9.27	8.93	29.64	21	3.03	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Flood	S	1	13:12	9.51	8.94	29.71	21.2	2.96	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Flood	В	8.8	12:11	9.52	9.05	29.69	21	3.96	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Flood	В	8.8	12:11	9.64	9.06	30.4	21.1	4.04	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Flood	M	4.9	12:12	9.62	9.12	29.42	21.1	2.71	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Flood	M	4.9	12:12	9.37	9.04	30.99	21.5	2.64	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Flood	S	1	12:13	9.02	9.05	29.67	21	3.47	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Flood	S	1	12:13	9.11	9.12	31.04	21.5	3.54	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Flood	В	11.1	11:48	9.1	9.08	30.46	21.4	3.5	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Flood	В	11.1	11:48	9.05	9	31.08	21.2	3.51	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Flood	M	6.05	11:49	9.44	9.11	31.04	21.5	2.73	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Flood	M	6.05	11:49	9.42	9.08	32.77	21.5	2.83	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Flood	S	1	11:50	9.56	9.1	29.06	21	3.14	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Flood	S	1	11:50	9.19	9.08	31.64	21.1	3.17	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Flood	В	10.7	12:02	9.1	9.16	29.38	21.3	3.67	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Flood	В	10.7	12:02	9.06	9.11	29.71	21.5	3.77	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Flood	M	5.85	12:03	9.13	9.08	29.88	21.5	2.76	2	-	-	-
CR2	20190227	Sunny	Light	Mid-Flood	M	5.85	12:03	9.4	9.12	29.62	21.2	2.81	3	-	-	-

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190227	Sunny	Light	Mid-Flood	S	1	12:04	9.26	8.96	31.76	21	3.35	3	-	-	-
CR2	20190227	Sunny	Light	Mid-Flood	S	1	12:04	9.24	8.96	29.17	21.2	3.4	2	-	-	-
B1	20190227	Sunny	Light	Mid-Ebb	В	5	15:57	9.41	9.02	32.74	21.2	3.94	<2	-	-	-
B1	20190227	Sunny	Light	Mid-Ebb	В	5	15:57	9.4	9.12	29.99	21	3.86	<2	-	-	-
B1	20190227	Sunny	Light	Mid-Ebb	S	1	15:58	9.4	8.98	30.7	21.3	3.27	2	-	-	-
B1	20190227	Sunny	Light	Mid-Ebb	S	1	15:58	9.05	9.11	29.87	21.1	3.25	3	-	-	-
B2	20190227	Sunny	Light	Mid-Ebb	В	4.2	16:10	9.35	9.13	33.07	21.4	3.89	<2	-	-	-
B2	20190227	Sunny	Light	Mid-Ebb	В	4.2	16:10	9.1	8.94	29.22	21.4	3.9	<2	-	-	-
B2	20190227	Sunny	Light	Mid-Ebb	S	1	16:11	9.24	9.03	29.39	21.3	3.33	2	-	-	-
B2	20190227	Sunny	Light	Mid-Ebb	S	1	16:11	9.43	9.02	29.11	21.5	3.34	2	-	-	-
В3	20190227	Sunny	Light	Mid-Ebb	В	4.5	16:03	9.13	9.02	31.08	21.4	3.67	<2	-	-	-
В3	20190227	Sunny	Light	Mid-Ebb	В	4.5	16:03	9.66	9.01	31.04	21.1	3.57	<2	-	-	-
В3	20190227	Sunny	Light	Mid-Ebb	S	1	16:04	9.67	9.01	32.49	21.3	3.2	<2	-	-	-
В3	20190227	Sunny	Light	Mid-Ebb	S	1	16:04	9.48	9.01	31.18	21.1	3.19	<2	-	-	-
B4	20190227	Sunny	Light	Mid-Ebb	В	4.3	16:15	9.09	9.16	31.58	21.3	3.68	<2	-	-	-
B4	20190227	Sunny	Light	Mid-Ebb	В	4.3	16:15	9.08	9.02	30.24	21.4	3.7	<2	-	-	-
B4	20190227	Sunny	Light	Mid-Ebb	S	1	16:16	8.95	9.03	30.36	21	3.33	4	-	-	-
B4	20190227	Sunny	Light	Mid-Ebb	S	1	16:16	9.29	9.07	30.81	21	3.39	4	-	-	-
C1	20190227	Sunny	Light	Mid-Ebb	В	8.3	15:35	9.58	9.13	30.96	21.2	3.85	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Ebb	В	8.3	15:35	9.53	9.16	29.76	21.2	3.88	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Ebb	M	4.65	15:36	9.13	9.14	29.5	21	2.65	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Ebb	M	4.65	15:36	9.34	9.14	31.67	21	2.68	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Ebb	S	1	15:37	9.17	9.17	31.49	21.2	3.46	<2	-	-	-
C1	20190227	Sunny	Light	Mid-Ebb	S	1	15:37	9.46	9.08	29.69	21.2	3.41	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Ebb	В	7	16:25	9.47	9.17	29.67	21.2	3.56	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Ebb	В	7	16:25	9.35	8.95	30.09	21.5	3.57	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Ebb	M	4	16:26	8.95	9.11	30.06	21.1	2.56	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Ebb	M	4	16:26	9.67	9.07	29.85	21.5	2.47	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Ebb	S	1	16:27	9.41	8.96	31.16	21.3	3.09	<2	-	-	-
C2	20190227	Sunny	Light	Mid-Ebb	S	1	16:27	9.45	8.99	33.02	21.3	3.09	<2	-	-	-
F1	20190227	Sunny	Light	Mid-Ebb	В	6.2	16:47	9.31	9.09	31.13	21.3	3.63	2	-	-	-
F1	20190227	Sunny	Light	Mid-Ebb	В	6.2	16:47	9.67	9.08	32.29	21.3	3.71	2	-	-	-

Contract No. EP/SP/66/12

Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190227	Sunny	Light	Mid-Ebb	M	3.6	16:48	9.46	9.13	31.6	21	2.96	2	-	-	-
F1	20190227	Sunny	Light	Mid-Ebb	M	3.6	16:48	9.47	8.97	32.01	21.5	3.04	2	-	-	-
F1	20190227	Sunny	Light	Mid-Ebb	S	1	16:49	9.18	8.94	31.22	21	3.46	2	-	-	-
F1	20190227	Sunny	Light	Mid-Ebb	S	1	16:49	9.13	9.11	32.13	21.3	3.36	2	-	-	-
H1	20190227	Sunny	Light	Mid-Ebb	В	6.8	15:48	9.34	9.09	32.12	21	3.71	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Ebb	В	6.8	15:48	9.39	8.97	32.98	21.4	3.8	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Ebb	M	3.9	15:49	9.1	9.15	29.48	21.5	2.56	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Ebb	M	3.9	15:49	9.39	9.17	31.04	21.5	2.51	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Ebb	S	1	15:50	9.38	8.93	31.94	21.4	3.35	<2	-	-	-
H1	20190227	Sunny	Light	Mid-Ebb	S	1	15:50	9.5	8.98	30.37	21.1	3.37	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Ebb	В	8.9	17:19	9.67	9.1	32.21	21.5	3.9	5	-	-	-
M1	20190227	Sunny	Light	Mid-Ebb	В	8.9	17:19	9	8.99	29.53	21.5	3.96	4	-	-	-
M1	20190227	Sunny	Light	Mid-Ebb	M	4.95	17:20	9.21	8.95	31.76	21.5	2.75	4	-	-	-
M1	20190227	Sunny	Light	Mid-Ebb	M	4.95	17:20	9.28	9.08	32.25	21.3	2.8	4	-	-	-
M1	20190227	Sunny	Light	Mid-Ebb	S	1	17:21	9.39	9.13	31.67	21.4	3.48	<2	-	-	-
M1	20190227	Sunny	Light	Mid-Ebb	S	1	17:21	9.5	9.07	30.81	21.2	3.56	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Ebb	В	11.8	16:47	9.45	9.17	31.88	21.4	3.51	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Ebb	В	11.8	16:47	9.21	8.92	32.7	21.3	3.43	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Ebb	M	6.4	16:48	9.13	9.01	31.41	21.1	2.8	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Ebb	M	6.4	16:48	9.36	9.05	29.86	21.5	2.71	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Ebb	S	1	16:49	9.49	9.13	30.77	21.2	3.27	<2	-	-	-
CR1	20190227	Sunny	Light	Mid-Ebb	S	1	16:49	9.35	9.13	29.79	21.3	3.21	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Ebb	В	9.6	17:02	9.45	9.1	31.04	21	3.76	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Ebb	В	9.6	17:02	9.54	9.05	29.36	21.3	3.85	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Ebb	M	5.3	17:03	8.99	8.96	30.37	21.3	2.9	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Ebb	M	5.3	17:03	9.38	9.17	30.26	21	2.94	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Ebb	S	1	17:04	9.56	8.92	32.32	21	3.21	<2	-	-	-
CR2	20190227	Sunny	Light	Mid-Ebb	S	1	17:04	9.64	8.98	29.43	21.3	3.2	<2	-	-	-

Remarks:

note 1: S – Surface M – Middle B – Bottom

note 2: Cancelled due to container leakage.

note 3: Measurements of turbidity would be rounding to 0.1 NTU for proven accuracy as per the equipment specs during utilization of data.

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190211	Sunny	Calm	Mid-Flood	В	8.6	10:09	10.25	8.18	31	21.2	3.02	<2	112	0.35	NW
UC1	20190211	Sunny	Calm	Mid-Flood	В	8.6	10:09	10.36	8.39	30.16	21.2	3.08	3	113	0.37	NW
UC1	20190211	Sunny	Calm	Mid-Flood	M	4.8	10:10	10.43	8.5	30.57	21.3	3.08	2	113	0.28	NW
UC1	20190211	Sunny	Calm	Mid-Flood	M	4.8	10:10	10.56	8.36	30.35	21.4	2.98	2	113	0.3	NW
UC1	20190211	Sunny	Calm	Mid-Flood	S	1	10:11	10.75	8.19	30.39	21.2	2.96	2	112	0.21	NW
UC1	20190211	Sunny	Calm	Mid-Flood	S	1	10:12	10.59	8.12	30.64	21.2	3.03	2	112	0.22	NW
UC2	20190211	Sunny	Calm	Mid-Flood	В	9.8	10:25	10.49	8.39	30.47	21.2	3.28	<2	113	0.39	NW
UC2	20190211	Sunny	Calm	Mid-Flood	В	9.8	10:26	10.42	8.11	30.39	21.3	3.38	Note 3	112	0.4	NW
UC2	20190211	Sunny	Calm	Mid-Flood	M	5.4	10:26	10.43	8.27	30.45	21.2	3.39	2	112	0.3	NW
UC2	20190211	Sunny	Calm	Mid-Flood	M	5.4	10:27	10.55	8.31	30.62	21.4	3.45	3	113	0.29	NW
UC2	20190211	Sunny	Calm	Mid-Flood	S	1	10:28	10.49	8.3	30.35	21.3	3.36	2	112	0.19	NW
UC2	20190211	Sunny	Calm	Mid-Flood	S	1	10:28	10.32	8.01	30.69	21.2	3.28	3	113	0.18	NW
I1	20190211	Sunny	Calm	Mid-Flood	В	10.4	10:44	10.41	8.5	30.7	21.3	3.3	2	114	0.38	NW
I1	20190211	Sunny	Calm	Mid-Flood	В	10.4	10:45	10.44	8.12	30.52	21.4	3.3	3	113	0.4	NW
I1	20190211	Sunny	Calm	Mid-Flood	M	5.7	10:45	10.44	8.49	30.88	21.4	3.35	2	114	0.31	NW
I1	20190211	Sunny	Calm	Mid-Flood	M	5.7	10:46	10.46	8.21	30.74	21.3	3.4	3	114	0.32	NW
I1	20190211	Sunny	Calm	Mid-Flood	S	1	10:46	10.48	8.13	30.76	21.4	3.3	3	113	0.21	NW
I1	20190211	Sunny	Calm	Mid-Flood	S	1	10:47	10.51	8.12	30.55	21.4	3.32	3	113	0.22	NW
I2	20190211	Sunny	Calm	Mid-Flood	В	10.2	10:52	10.22	8.13	30.65	21.4	3.09	3	111	0.36	NW
I2	20190211	Sunny	Calm	Mid-Flood	В	10.2	10:52	10.28	8.03	30.5	21.2	3.08	<2	112	0.36	NW
I2	20190211	Sunny	Calm	Mid-Flood	M	5.6	10:53	10.32	8.38	30.95	21.4	3.15	<2	113	0.33	NW
I2	20190211	Sunny	Calm	Mid-Flood	M	5.6	10:53	10.38	8.29	30.74	21.4	3.18	<2	112	0.33	NW
I2	20190211	Sunny	Calm	Mid-Flood	S	1	10:54	10.43	8.24	30.79	21.2	3.1	2	113	0.25	NW
I2	20190211	Sunny	Calm	Mid-Flood	S	1	10:55	10.59	8.15	30.53	21.3	3.01	4	113	0.26	NW
I3	20190211	Sunny	Calm	Mid-Flood	В	10.2	11:00	10.1	8.06	30.58	21.4	3.1	3	112	0.44	NW
I3	20190211	Sunny	Calm	Mid-Flood	В	10.2	11:01	10.11	8.39	30.91	21.3	3.08	2	112	0.45	NW
I3	20190211	Sunny	Calm	Mid-Flood	M	5.6	11:02	10.24	8.35	30.98	21.2	3.14	<2	112	0.35	NW
13	20190211	Sunny	Calm	Mid-Flood	M	5.6	11:02	10.18	8.33	30.26	21.4	3.21	<2	112	0.33	NW
13	20190211	Sunny	Calm	Mid-Flood	S	1	11:03	10.07	8.15	30.92	21.2	3.23	<2	113	0.15	NW
I3	20190211	Sunny	Calm	Mid-Flood	S	1	11:03	9.9	8.11	30.95	21.4	3.18	2	112	0.14	NW
I4	20190211	Sunny	Calm	Mid-Flood	В	10.7	11:11	10.56	8.45	30.98	21.3	3	2	113	0.43	NW
I4	20190211	Sunny	Calm	Mid-Flood	В	10.7	11:12	10.52	8.45	30.69	21.4	3.01	<2	112	0.43	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I4	20190211	Sunny	Calm	Mid-Flood	M	5.9	11:12	10.34	8.02	30.36	21.3	3.08	<2	112	0.31	NW
I4	20190211	Sunny	Calm	Mid-Flood	M	5.9	11:13	10.4	8.09	30.3	21.3	3.02	3	112	0.33	NW
I4	20190211	Sunny	Calm	Mid-Flood	S	1	11:13	10.21	8.18	30.27	21.2	2.95	2	112	0.15	NW
I4	20190211	Sunny	Calm	Mid-Flood	S	1	11:14	10.11	8.41	30.41	21.4	2.87	2	113	0.17	NW
I5	20190211	Sunny	Calm	Mid-Flood	В	11.3	11:19	10.76	8.15	30.53	21.2	3.25	2	112	0.45	NW
I5	20190211	Sunny	Calm	Mid-Flood	В	11.3	11:19	10.88	8.05	30.88	21.3	3.21	<2	111	0.46	NW
I5	20190211	Sunny	Calm	Mid-Flood	M	6.2	11:20	11.05	8.12	30.89	21.4	3.18	<2	112	0.25	NW
I5	20190211	Sunny	Calm	Mid-Flood	M	6.2	11:21	11.18	8.5	30.48	21.4	3.24	<2	113	0.26	NW
I5	20190211	Sunny	Calm	Mid-Flood	S	1	11:21	11.37	8.22	30.1	21.3	3.2	<2	112	0.19	NW
I5	20190211	Sunny	Calm	Mid-Flood	S	1	11:22	11.22	8.02	30.22	21.2	3.18	2	112	0.21	NW
I6	20190211	Sunny	Calm	Mid-Flood	В	8.7	11:29	10.48	8.07	30.14	21.3	3.13	2	112	0.45	NW
I6	20190211	Sunny	Calm	Mid-Flood	В	8.7	11:30	10.43	8.21	30.62	21.4	3.11	<2	112	0.43	NW
I6	20190211	Sunny	Calm	Mid-Flood	M	4.9	11:31	10.28	8.03	30.62	21.4	3.2	<2	112	0.29	NW
I6	20190211	Sunny	Calm	Mid-Flood	M	4.9	11:31	10.46	8.45	30.47	21.3	3.23	2	113	0.28	NW
I6	20190211	Sunny	Calm	Mid-Flood	S	1	11:32	10.29	8.02	30.1	21.3	3.22	<2	112	0.23	NW
I6	20190211	Sunny	Calm	Mid-Flood	S	1	11:32	10.12	8.33	30.34	21.2	3.15	2	112	0.24	NW
I7	20190211	Sunny	Calm	Mid-Flood	В	9.2	11:39	10.22	8.24	30.74	21.4	3.09	2	112	0.36	NW
I7	20190211	Sunny	Calm	Mid-Flood	В	9.2	11:40	10.36	8.37	30.9	21.2	3.15	<2	112	0.34	NW
I7	20190211	Sunny	Calm	Mid-Flood	M	5.1	11:40	10.42	8.02	30.43	21.2	3.16	3	111	0.33	NW
I7	20190211	Sunny	Calm	Mid-Flood	M	5.1	11:41	10.48	8.14	30.62	21.2	3.16	3	113	0.35	NW
I7	20190211	Sunny	Calm	Mid-Flood	S	1	11:42	10.32	8.42	30.82	21.2	3.24	<2	112	0.18	NW
I7	20190211	Sunny	Calm	Mid-Flood	S	1	11:42	10.47	8.07	30.94	21.2	3.31	<2	113	0.16	NW
I8	20190211	Sunny	Calm	Mid-Flood	В	11	11:48	10.69	8.2	30.37	21.4	3.06	<2	112	0.37	NW
18	20190211	Sunny	Calm	Mid-Flood	В	11	11:48	10.56	8.01	30.26	21.2	3.01	2	112	0.36	NW
18	20190211	Sunny	Calm	Mid-Flood	M	6	11:49	10.39	8.14	30.54	21.2	3.04	2	113	0.29	NW
I8	20190211	Sunny	Calm	Mid-Flood	M	6	11:50	10.51	8.41	30.81	21.3	3.11	<2	113	0.31	NW
I8	20190211	Sunny	Calm	Mid-Flood	S	1	11:50	10.46	8.26	30.72	21.3	3.15	2	112	0.15	NW
18	20190211	Sunny	Calm	Mid-Flood	S	1	11:51	10.29	8.21	30.36	21.3	3.08	<2	112	0.16	NW
19	20190211	Sunny	Calm	Mid-Flood	В	9.2	11:57	10.44	8.33	30.72	21.3	3.09	2	112	0.43	NW
19	20190211	Sunny	Calm	Mid-Flood	В	9.2	11:57	10.39	8.49	30.55	21.4	3.01	<2	113	0.42	NW
19	20190211	Sunny	Calm	Mid-Flood	M	5.1	11:58	10.43	8.27	30.7	21.2	3.06	<2	113	0.28	NW
19	20190211	Sunny	Calm	Mid-Flood	M	5.1	11:58	10.62	8.43	30.87	21.4	3.03	2	113	0.26	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
19	20190211	Sunny	Calm	Mid-Flood	S	1	11:59	10.69	8.31	30.26	21.2	3.08	2	113	0.24	NW
19	20190211	Sunny	Calm	Mid-Flood	S	1	12:00	10.88	8.08	30.48	21.4	2.99	3	113	0.24	NW
I10	20190211	Sunny	Calm	Mid-Flood	В	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190211	Sunny	Calm	Mid-Flood	В	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190211	Sunny	Calm	Mid-Flood	M	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190211	Sunny	Calm	Mid-Flood	M	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190211	Sunny	Calm	Mid-Flood	S	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190211	Sunny	Calm	Mid-Flood	S	Note 4	-	-	-	-	-	-	-	-	-	-
UC1	20190211	Cloudy	Light	Mid-Ebb	В	11.3	15:36	10.23	8.41	30.33	21.3	3.18	<2	113	0.41	SE
UC1	20190211	Cloudy	Light	Mid-Ebb	В	11.3	15:36	10.41	8.47	30.33	21.2	3.18	<2	113	0.39	SE
UC1	20190211	Cloudy	Light	Mid-Ebb	M	6.2	15:37	10.46	8.41	30.67	21.3	3.25	<2	113	0.35	SE
UC1	20190211	Cloudy	Light	Mid-Ebb	M	6.2	15:37	10.53	8.33	30.26	21.2	3.24	<2	113	0.37	SE
UC1	20190211	Cloudy	Light	Mid-Ebb	S	1	15:38	10.37	8.11	30.9	21.3	3.21	<2	113	0.16	SE
UC1	20190211	Cloudy	Light	Mid-Ebb	S	1	15:39	10.43	8.36	30.1	21.2	3.25	2	113	0.18	SE
UC2	20190211	Cloudy	Light	Mid-Ebb	В	11	15:51	10.64	8.48	30.98	21.3	3.05	<2	113	0.44	SE
UC2	20190211	Cloudy	Light	Mid-Ebb	В	11	15:52	10.47	8.33	30.89	21.4	3.08	2	113	0.45	SE
UC2	20190211	Cloudy	Light	Mid-Ebb	M	6	15:53	10.41	8.38	30.5	21.2	3.08	<2	113	0.3	SE
UC2	20190211	Cloudy	Light	Mid-Ebb	M	6	15:53	10.31	8.22	30.37	21.4	3.12	2	113	0.28	SE
UC2	20190211	Cloudy	Light	Mid-Ebb	S	1	15:54	10.41	8.4	30.17	21.4	3.19	3	113	0.22	SE
UC2	20190211	Cloudy	Light	Mid-Ebb	S	1	15:54	10.55	8.14	30.23	21.2	3.24	3	112	0.24	SE
I1	20190211	Cloudy	Light	Mid-Ebb	В	10.1	16:11	10.69	8.07	30.24	21.2	3.08	2	112	0.39	SE
I1	20190211	Cloudy	Light	Mid-Ebb	В	10.1	16:12	10.6	8.48	30.58	21.3	3.01	<2	114	0.4	SE
I1	20190211	Cloudy	Light	Mid-Ebb	M	5.6	16:12	10.69	8.17	30.98	21.2	2.98	2	114	0.34	SE
I1	20190211	Cloudy	Light	Mid-Ebb	M	5.6	16:13	10.85	8.3	30.29	21.4	2.89	2	114	0.33	SE
I1	20190211	Cloudy	Light	Mid-Ebb	S	1	16:13	11	8.23	30.15	21.3	2.93	<2	113	0.15	SE
I1	20190211	Cloudy	Light	Mid-Ebb	S	1	16:14	11.14	8.12	30.56	21.2	3.02	2	114	0.14	SE
I2	20190211	Cloudy	Light	Mid-Ebb	В	8.9	16:33	10.59	8.22	30.11	21.3	3.25	<2	115	0.45	SE
I2	20190211	Cloudy	Light	Mid-Ebb	В	8.9	16:33	10.49	8.15	30.24	21.2	3.22	3	113	0.45	SE
I2	20190211	Cloudy	Light	Mid-Ebb	M	5	16:34	10.54	8.12	30.11	21.2	3.32	<2	112	0.29	SE
I2	20190211	Cloudy	Light	Mid-Ebb	M	5	16:35	10.37	8.25	30.76	21.4	3.35	<2	114	0.29	SE
I2	20190211	Cloudy	Light	Mid-Ebb	S	1	16:35	10.46	8.4	30.71	21.3	3.36	3	114	0.23	SE
I2	20190211	Cloudy	Light	Mid-Ebb	S	1	16:36	10.42	8.16	30.1	21.2	3.33	4	114	0.21	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I3	20190211	Cloudy	Light	Mid-Ebb	В	10.6	16:41	10.62	8.09	30.94	21.4	3.28	<2	113	0.43	SE
I3	20190211	Cloudy	Light	Mid-Ebb	В	10.6	16:42	10.44	8.42	30.39	21.4	3.24	<2	113	0.43	SE
I3	20190211	Cloudy	Light	Mid-Ebb	M	5.8	16:43	10.27	8.36	30.11	21.4	3.14	<2	112	0.33	SE
I3	20190211	Cloudy	Light	Mid-Ebb	M	5.8	16:43	10.16	8.12	30.93	21.4	3.16	<2	113	0.35	SE
I3	20190211	Cloudy	Light	Mid-Ebb	S	1	16:44	10.2	8.25	30.27	21.4	3.22	<2	114	0.19	SE
I3	20190211	Cloudy	Light	Mid-Ebb	S	1	16:44	10.32	8.5	30.53	21.4	3.15	<2	113	0.21	SE
I4	20190211	Cloudy	Light	Mid-Ebb	В	11.5	16:50	10.65	8.28	30.37	21.3	3	<2	113	0.45	SE
I4	20190211	Cloudy	Light	Mid-Ebb	В	11.5	16:51	10.61	8.41	30.83	21.3	3.04	<2	113	0.43	SE
I4	20190211	Cloudy	Light	Mid-Ebb	M	6.3	16:51	10.42	8.43	30.91	21.2	3.1	2	113	0.25	SE
I4	20190211	Cloudy	Light	Mid-Ebb	M	6.3	16:52	10.62	8.29	30.49	21.2	3.02	<2	114	0.23	SE
I4	20190211	Cloudy	Light	Mid-Ebb	S	1	16:53	10.63	8.5	30.31	21.3	3.07	<2	113	0.17	SE
I4	20190211	Cloudy	Light	Mid-Ebb	S	1	16:53	10.43	8.4	30.27	21.4	3.15	2	114	0.17	SE
I5	20190211	Cloudy	Light	Mid-Ebb	В	9.9	17:01	10.56	8.16	30.97	21.3	3.25	<2	111	0.37	SE
I5	20190211	Cloudy	Light	Mid-Ebb	В	9.9	17:01	10.5	8.19	30.41	21.2	3.23	<2	112	0.38	SE
I5	20190211	Cloudy	Light	Mid-Ebb	M	5.5	17:02	10.52	8.41	30.75	21.4	3.23	<2	113	0.27	SE
I5	20190211	Cloudy	Light	Mid-Ebb	M	5.5	17:03	10.58	8.37	30.52	21.4	3.28	<2	111	0.26	SE
I5	20190211	Cloudy	Light	Mid-Ebb	S	1	17:03	10.63	8.04	30.79	21.3	3.36	<2	113	0.19	SE
I5	20190211	Cloudy	Light	Mid-Ebb	S	1	17:04	10.51	8.4	30.31	21.3	3.28	<2	112	0.2	SE
I6	20190211	Cloudy	Light	Mid-Ebb	В	9.7	17:54	10.68	8.24	30.32	21.3	3.21	2	112	0.43	SE
I6	20190211	Cloudy	Light	Mid-Ebb	В	9.7	17:55	10.8	8.05	30.45	21.3	3.29	3	111	0.42	SE
I6	20190211	Cloudy	Light	Mid-Ebb	M	5.4	17:56	10.81	8.16	30.92	21.2	3.33	3	112	0.31	SE
I6	20190211	Cloudy	Light	Mid-Ebb	M	5.4	17:56	10.75	8	30.73	21.4	3.35	2	112	0.31	SE
I6	20190211	Cloudy	Light	Mid-Ebb	S	1	17:57	10.69	8.37	30.28	21.2	3.45	3	112	0.19	SE
I6	20190211	Cloudy	Light	Mid-Ebb	S	1	17:58	10.52	8.34	30.14	21.3	3.43	<2	111	0.18	SE
I7	20190211	Cloudy	Light	Mid-Ebb	В	8.6	17:42	10.2	8.1	30.34	21.4	3.01	4	114	0.36	SE
I7	20190211	Cloudy	Light	Mid-Ebb	В	8.6	17:43	10.01	8.1	30.15	21.3	3.03	3	112	0.37	SE
I7	20190211	Cloudy	Light	Mid-Ebb	M	4.8	17:43	10.07	8.1	30.66	21.4	3.02	<2	113	0.29	SE
I7	20190211	Cloudy	Light	Mid-Ebb	M	4.8	17:44	10.08	8.48	30.99	21.2	3.06	2	114	0.3	SE
I7	20190211	Cloudy	Light	Mid-Ebb	S	1	17:45	10.13	8.19	30.89	21.4	3.07	4	113	0.16	SE
I7	20190211	Cloudy	Light	Mid-Ebb	S	1	17:45	9.97	8.39	30.55	21.3	3.08	3	113	0.16	SE
18	20190211	Cloudy	Light	Mid-Ebb	В	8.7	17:32	10.54	8.23	30.55	21.4	3.02	3	111	0.39	SE
18	20190211	Cloudy	Light	Mid-Ebb	В	8.7	17:33	10.57	8.31	30.85	21.4	3.06	4	112	0.39	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I8	20190211	Cloudy	Light	Mid-Ebb	M	4.9	17:33	10.5	8.17	30.64	21.3	3.03	4	111	0.31	SE
18	20190211	Cloudy	Light	Mid-Ebb	M	4.9	17:34	10.63	8.02	30.94	21.2	2.95	4	112	0.29	SE
18	20190211	Cloudy	Light	Mid-Ebb	S	1	17:34	10.48	8.21	30.67	21.2	2.87	3	111	0.24	SE
18	20190211	Cloudy	Light	Mid-Ebb	S	1	17:35	10.43	8.24	30.4	21.3	2.85	3	112	0.25	SE
19	20190211	Cloudy	Light	Mid-Ebb	В	10.5	17:21	10.18	8.23	30.63	21.4	3.06	2	113	0.4	SE
19	20190211	Cloudy	Light	Mid-Ebb	В	10.5	17:21	10.23	8.02	30.57	21.3	2.98	<2	114	0.39	SE
19	20190211	Cloudy	Light	Mid-Ebb	M	5.8	17:22	10.19	8.08	30.64	21.3	2.9	2	113	0.35	SE
19	20190211	Cloudy	Light	Mid-Ebb	M	5.8	17:22	10.07	8.23	30.63	21.4	2.93	2	114	0.36	SE
19	20190211	Cloudy	Light	Mid-Ebb	S	1	17:23	9.94	8.43	30.38	21.3	2.86	3	112	0.2	SE
19	20190211	Cloudy	Light	Mid-Ebb	S	1	17:24	9.85	8.26	30.75	21.2	2.79	3	113	0.2	SE
I10	20190211	Cloudy	Light	Mid-Ebb	В	11.1	17:11	10.5	8.05	30.29	21.4	3.25	<2	113	0.43	SE
I10	20190211	Cloudy	Light	Mid-Ebb	В	11.1	17:12	10.46	8.29	30.33	21.4	3.18	<2	112	0.42	SE
I10	20190211	Cloudy	Light	Mid-Ebb	M	6.1	17:13	10.62	8.27	30.99	21.3	3.22	<2	112	0.29	SE
I10	20190211	Cloudy	Light	Mid-Ebb	M	6.1	17:13	10.56	8.37	30.57	21.2	3.2	2	112	0.27	SE
I10	20190211	Cloudy	Light	Mid-Ebb	S	1	17:14	10.72	8.43	30.2	21.2	3.2	<2	112	0.24	SE
I10	20190211	Cloudy	Light	Mid-Ebb	S	1	17:14	10.6	8.22	30.9	21.4	3.13	<2	113	0.24	SE
UC1	20190212	Sunny	Calm	Mid-Flood	В	10	10:45	10.29	8.31	30.39	22.5	3.82	4	113	0.43	NW
UC1	20190212	Sunny	Calm	Mid-Flood	В	10	10:45	10.19	8.37	30.58	22.7	3.83	4	113	0.41	NW
UC1	20190212	Sunny	Calm	Mid-Flood	M	5.5	10:46	10.35	8.37	30.92	22.7	3.93	3	113	0.27	NW
UC1	20190212	Sunny	Calm	Mid-Flood	M	5.5	10:46	10.25	8.44	31.07	22.6	3.9	3	112	0.27	NW
UC1	20190212	Sunny	Calm	Mid-Flood	S	1	10:47	10.4	8.44	30.44	22.6	3.99	3	113	0.18	NW
UC1	20190212	Sunny	Calm	Mid-Flood	S	1	10:48	10.58	8.33	30.35	22.6	4.04	2	113	0.18	NW
UC2	20190212	Sunny	Calm	Mid-Flood	В	12.3	10:52	10.36	8.23	31.1	22.5	3.81	3	114	0.37	NW
UC2	20190212	Sunny	Calm	Mid-Flood	В	12.3	10:52	10.47	8.19	30.88	22.7	3.81	2	112	0.38	NW
UC2	20190212	Sunny	Calm	Mid-Flood	M	6.7	10:53	10.5	8.37	30.14	22.6	3.87	2	112	0.34	NW
UC2	20190212	Sunny	Calm	Mid-Flood	M	6.7	10:53	10.46	8.27	30.85	22.6	3.86	3	113	0.36	NW
UC2	20190212	Sunny	Calm	Mid-Flood	S	1	10:54	10.59	8.03	30.97	22.5	3.91	3	114	0.21	NW
UC2	20190212	Sunny	Calm	Mid-Flood	S	1	10:55	10.56	8.17	30.18	22.6	3.9	3	114	0.23	NW
I1	20190212	Sunny	Calm	Mid-Flood	В	9.6	11:01	10.92	8.13	30.58	22.6	3.82	2	112	0.43	NW
I1	20190212	Sunny	Calm	Mid-Flood	В	9.6	11:02	10.96	8.17	30.25	22.7	3.75	2	113	0.45	NW
I1	20190212	Sunny	Calm	Mid-Flood	М	5.3	11:02	11.1	8.37	30.06	22.5	3.65	3	113	0.32	NW
I1	20190212	Sunny	Calm	Mid-Flood	M	5.3	11:03	11.21	8.4	30.04	22.5	3.7	2	113	0.3	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190212	Sunny	Calm	Mid-Flood	S	1	11:04	11.23	8.27	30.61	22.5	3.64	3	114	0.24	NW
I1	20190212	Sunny	Calm	Mid-Flood	S	1	11:04	11.13	8.05	30.22	22.6	3.7	3	114	0.22	NW
I2	20190212	Sunny	Calm	Mid-Flood	В	9.3	11:11	10.29	8.02	30.1	22.6	3.83	3	112	0.36	NW
I2	20190212	Sunny	Calm	Mid-Flood	В	9.3	11:12	10.22	8.26	31	22.5	3.8	2	112	0.38	NW
I2	20190212	Sunny	Calm	Mid-Flood	M	5.2	11:12	10.31	8.16	30.7	22.7	3.86	2	113	0.29	NW
I2	20190212	Sunny	Calm	Mid-Flood	M	5.2	11:13	10.36	8.18	31.18	22.7	3.76	2	113	0.27	NW
I2	20190212	Sunny	Calm	Mid-Flood	S	1	11:13	10.27	8.25	30.72	22.7	3.81	3	114	0.24	NW
I2	20190212	Sunny	Calm	Mid-Flood	S	1	11:14	10.46	8.22	30.6	22.6	3.84	2	111	0.24	NW
I3	20190212	Sunny	Calm	Mid-Flood	В	11.9	11:17	10.43	8.44	30.88	22.5	3.88	2	114	0.45	NW
I3	20190212	Sunny	Calm	Mid-Flood	В	11.9	11:17	10.25	8.06	30.53	22.6	3.81	2	113	0.44	NW
I3	20190212	Sunny	Calm	Mid-Flood	M	6.5	11:18	10.19	8.28	30.93	22.6	3.86	3	112	0.35	NW
I3	20190212	Sunny	Calm	Mid-Flood	M	6.5	11:18	10.33	8.43	30.05	22.5	3.77	3	114	0.36	NW
I3	20190212	Sunny	Calm	Mid-Flood	S	1	11:19	10.13	8.33	30.91	22.7	3.85	2	113	0.19	NW
I3	20190212	Sunny	Calm	Mid-Flood	S	1	11:20	10.31	8.26	30.93	22.6	3.85	3	113	0.21	NW
I4	20190212	Sunny	Calm	Mid-Flood	В	11.8	11:25	10.36	8.24	30.27	22.7	3.89	3	113	0.39	NW
I4	20190212	Sunny	Calm	Mid-Flood	В	11.8	11:26	10.37	8.09	30.26	22.7	3.98	3	112	0.39	NW
I4	20190212	Sunny	Calm	Mid-Flood	M	6.4	11:27	10.44	8.21	30.27	22.7	3.99	3	113	0.27	NW
I4	20190212	Sunny	Calm	Mid-Flood	M	6.4	11:27	10.31	8.38	31.09	22.5	3.98	2	112	0.26	NW
I4	20190212	Sunny	Calm	Mid-Flood	S	1	11:28	10.26	8	30.04	22.6	3.89	3	111	0.19	NW
I4	20190212	Sunny	Calm	Mid-Flood	S	1	11:28	10.35	8.26	30.22	22.5	3.82	2	113	0.18	NW
I5	20190212	Sunny	Calm	Mid-Flood	В	Note 4	-	-	-	-	-	-	-	-	-	-
I5	20190212	Sunny	Calm	Mid-Flood	В	Note 4	-	-	-	-	-	-	-	-	-	-
I5	20190212	Sunny	Calm	Mid-Flood	M	Note 4	-	-	-	-	-	-	-	-	-	-
I5	20190212	Sunny	Calm	Mid-Flood	M	Note 4	-	-	-	-	-	-	-	-	-	-
I5	20190212	Sunny	Calm	Mid-Flood	S	Note 4	-	1	-	-	-	-	-	-	-	-
I5	20190212	Sunny	Calm	Mid-Flood	S	Note 4	-	-	-	-	-	-	-	-	-	-
I6	20190212	Sunny	Calm	Mid-Flood	В	11	11:49	10.47	8.43	30.48	22.6	3.76	4	113	0.39	NW
I6	20190212	Sunny	Calm	Mid-Flood	В	11	11:49	10.27	8.5	30.37	22.7	3.72	3	113	0.41	NW
I6	20190212	Sunny	Calm	Mid-Flood	M	6	11:50	10.36	8	30.02	22.5	3.68	4	112	0.27	NW
I6	20190212	Sunny	Calm	Mid-Flood	M	6	11:51	10.31	8.25	31.03	22.7	3.66	3	113	0.28	NW
I6	20190212	Sunny	Calm	Mid-Flood	S	1	11:51	10.46	8.21	30.88	22.5	3.57	3	114	0.22	NW
I6	20190212	Sunny	Calm	Mid-Flood	S	1	11:52	10.29	8.48	30.84	22.5	3.57	4	114	0.24	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I7	20190212	Sunny	Calm	Mid-Flood	В	9.4	11:38	10.26	8.27	30.85	22.7	3.99	3	112	0.38	NW
I7	20190212	Sunny	Calm	Mid-Flood	В	9.4	11:39	10.16	8.44	30.2	22.6	4.03	2	112	0.36	NW
I7	20190212	Sunny	Calm	Mid-Flood	M	5.2	11:40	10	8.22	30.89	22.7	3.97	2	114	0.31	NW
I7	20190212	Sunny	Calm	Mid-Flood	M	5.2	11:40	10.13	8.16	30.06	22.6	3.97	3	113	0.31	NW
I7	20190212	Sunny	Calm	Mid-Flood	S	1	11:41	10.09	8.05	30.55	22.7	4.05	3	111	0.24	NW
I7	20190212	Sunny	Calm	Mid-Flood	S	1	11:41	10.18	8.07	30.25	22.6	3.96	2	113	0.26	NW
I8	20190212	Sunny	Calm	Mid-Flood	В	11.5	11:38	10.14	8.22	31	22.7	3.98	3	113	0.37	NW
I8	20190212	Sunny	Calm	Mid-Flood	В	11.5	11:39	10.22	8.44	30.02	22.7	3.99	3	114	0.37	NW
I8	20190212	Sunny	Calm	Mid-Flood	M	6.3	11:39	10.02	8	30.56	22.5	4.06	3	113	0.31	NW
I8	20190212	Sunny	Calm	Mid-Flood	M	6.3	11:40	10.15	8.25	30.98	22.7	4.09	3	112	0.33	NW
I8	20190212	Sunny	Calm	Mid-Flood	S	1	11:41	10.05	8.03	30	22.7	4.02	3	112	0.15	NW
I8	20190212	Sunny	Calm	Mid-Flood	S	1	11:41	10.07	8.46	30.23	22.6	4.03	3	113	0.17	NW
I9	20190212	Sunny	Calm	Mid-Flood	В	10.6	11:31	10.39	8.21	30.26	22.6	3.82	4	114	0.41	NW
I9	20190212	Sunny	Calm	Mid-Flood	В	10.6	11:31	10.27	8.22	30.42	22.7	3.85	3	114	0.42	NW
I9	20190212	Sunny	Calm	Mid-Flood	M	5.8	11:32	10.44	8.45	30.21	22.7	3.85	4	113	0.29	NW
I9	20190212	Sunny	Calm	Mid-Flood	M	5.8	11:33	10.26	8.19	30.72	22.6	3.95	4	114	0.28	NW
I9	20190212	Sunny	Calm	Mid-Flood	S	1	11:33	10.16	8.4	30.33	22.7	3.99	5	113	0.15	NW
I9	20190212	Sunny	Calm	Mid-Flood	S	1	11:34	10.12	8.42	30.42	22.6	4.08	4	114	0.17	NW
I10	20190212	Sunny	Calm	Mid-Flood	В	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190212	Sunny	Calm	Mid-Flood	В	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190212	Sunny	Calm	Mid-Flood	M	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190212	Sunny	Calm	Mid-Flood	M	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190212	Sunny	Calm	Mid-Flood	S	Note 4	-	-	-	-	-	-	-	-	-	-
I10	20190212	Sunny	Calm	Mid-Flood	S	Note 4	-	-	-	-	-	-	-	-	-	-
UC1	20190212	Fine	Moderate	Mid-Ebb	В	10.2	14:53	10.27	8.14	31.11	22.6	3.75	5	114	0.43	SE
UC1	20190212	Fine	Moderate	Mid-Ebb	В	10.2	14:54	10.26	8.29	30.72	22.6	3.76	4	114	0.43	SE
UC1	20190212	Fine	Moderate	Mid-Ebb	M	5.6	14:54	10.32	8.46	30.69	22.6	3.7	5	114	0.32	SE
UC1	20190212	Fine	Moderate	Mid-Ebb	M	5.6	14:54	10.17	8.27	30.43	22.7	3.73	5	114	0.34	SE
UC1	20190212	Fine	Moderate	Mid-Ebb	S	1	14:55	10.25	8.3	30.42	22.6	3.74	3	113	0.23	SE
UC1	20190212	Fine	Moderate	Mid-Ebb	S	1	14:55	10.37	8.02	30.19	22.6	3.65	4	113	0.25	SE
UC2	20190212	Fine	Moderate	Mid-Ebb	В	12.3	14:57	10.17	8.45	30.73	22.6	3.84	4	114	0.38	SE
UC2	20190212	Fine	Moderate	Mid-Ebb	В	12.3	14:57	10.22	8.45	30.35	22.5	3.85	5	115	0.37	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190212	Fine	Moderate	Mid-Ebb	M	6.7	14:57	10.3	8.33	30.24	22.5	3.93	5	114	0.3	SE
UC2	20190212	Fine	Moderate	Mid-Ebb	M	6.7	14:58	10.34	8.04	31.06	22.7	3.93	6	114	0.32	SE
UC2	20190212	Fine	Moderate	Mid-Ebb	S	1	14:58	10.39	8.48	31.15	22.7	4.01	4	114	0.25	SE
UC2	20190212	Fine	Moderate	Mid-Ebb	S	1	14:58	10.19	8.19	31.18	22.7	4.02	3	114	0.26	SE
I1	20190212	Fine	Moderate	Mid-Ebb	В	9.2	15:01	10.82	8.16	31.2	22.5	3.98	5	113	0.41	SE
I1	20190212	Fine	Moderate	Mid-Ebb	В	9.2	15:01	10.96	8.01	31.13	22.6	3.9	5	114	0.43	SE
I1	20190212	Fine	Moderate	Mid-Ebb	M	5.1	15:02	11	8.33	30.96	22.5	3.98	3	114	0.28	SE
I1	20190212	Fine	Moderate	Mid-Ebb	M	5.1	15:02	11.17	8.17	31.2	22.5	4	4	113	0.26	SE
I1	20190212	Fine	Moderate	Mid-Ebb	S	1	15:02	11.2	8.45	30.32	22.6	4.04	4	114	0.15	SE
I1	20190212	Fine	Moderate	Mid-Ebb	S	1	15:03	11.06	8.19	30.38	22.7	4.13	4	114	0.16	SE
I2	20190212	Fine	Moderate	Mid-Ebb	В	10.7	15:04	10.74	8.46	30.38	22.5	3.76	4	114	0.36	SE
I2	20190212	Fine	Moderate	Mid-Ebb	В	10.7	15:04	10.63	8	31.18	22.7	3.72	4	114	0.37	SE
I2	20190212	Fine	Moderate	Mid-Ebb	M	5.9	15:05	10.8	8.35	30.9	22.6	3.79	5	113	0.32	SE
I2	20190212	Fine	Moderate	Mid-Ebb	M	5.9	15:05	10.63	8.06	30.53	22.7	3.76	4	114	0.32	SE
I2	20190212	Fine	Moderate	Mid-Ebb	S	1	15:06	10.46	8.13	31.07	22.5	3.68	7	113	0.24	SE
I2	20190212	Fine	Moderate	Mid-Ebb	S	1	15:06	10.33	8.27	30.55	22.5	3.71	6	113	0.24	SE
13	20190212	Fine	Moderate	Mid-Ebb	В	10	15:08	10.9	8.43	31.1	22.5	3.79	4	115	0.36	SE
I3	20190212	Fine	Moderate	Mid-Ebb	В	10	15:09	10.7	8.4	31.08	22.7	3.69	6	113	0.36	SE
I3	20190212	Fine	Moderate	Mid-Ebb	M	5.5	15:09	10.58	8.47	30.13	22.5	3.67	3	114	0.29	SE
I3	20190212	Fine	Moderate	Mid-Ebb	M	5.5	15:10	10.5	8.5	31.03	22.5	3.59	4	113	0.3	SE
I3	20190212	Fine	Moderate	Mid-Ebb	S	1	15:10	10.54	8.34	31.02	22.7	3.53	2	114	0.16	SE
I3	20190212	Fine	Moderate	Mid-Ebb	S	1	15:10	10.66	8.39	30.78	22.6	3.55	3	114	0.17	SE
I4	20190212	Fine	Moderate	Mid-Ebb	В	12.1	15:11	10.77	8.13	30.65	22.5	3.88	2	113	0.41	SE
I4	20190212	Fine	Moderate	Mid-Ebb	В	12.1	15:11	10.8	8.04	31.04	22.6	3.81	4	114	0.41	SE
I4	20190212	Fine	Moderate	Mid-Ebb	M	6.6	15:11	10.84	8.32	31.04	22.6	3.86	6	114	0.33	SE
I4	20190212	Fine	Moderate	Mid-Ebb	M	6.6	15:12	10.82	8.06	30.52	22.5	3.93	6	115	0.32	SE
I4	20190212	Fine	Moderate	Mid-Ebb	S	1	15:12	11.01	8.35	31.12	22.7	3.91	7	114	0.21	SE
I4	20190212	Fine	Moderate	Mid-Ebb	S	1	15:13	10.96	8.32	30.13	22.7	3.84	7	113	0.21	SE
I5	20190212	Fine	Moderate	Mid-Ebb	В	10.9	15:15	10.99	8.45	30.67	22.6	3.81	3	114	0.38	SE
I5	20190212	Fine	Moderate	Mid-Ebb	В	10.9	15:15	11.14	8.33	30.26	22.6	3.77	3	113	0.4	SE
I5	20190212	Fine	Moderate	Mid-Ebb	M	6	15:16	11.01	8.35	30.67	22.6	3.79	2	115	0.28	SE
I5	20190212	Fine	Moderate	Mid-Ebb	M	6	15:16	10.91	8.25	30.09	22.5	3.89	<2	114	0.27	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190212	Fine	Moderate	Mid-Ebb	S	1	15:17	10.84	8.5	30.81	22.5	3.94	2	114	0.2	SE
I5	20190212	Fine	Moderate	Mid-Ebb	S	1	15:17	10.71	8.49	30.69	22.7	3.9	2	113	0.21	SE
I6	20190212	Fine	Moderate	Mid-Ebb	В	9.5	15:40	10.53	8.28	30.56	22.5	3.75	3	112	0.37	SE
I6	20190212	Fine	Moderate	Mid-Ebb	В	9.5	15:41	10.51	8.16	30.75	22.7	3.8	4	112	0.36	SE
I6	20190212	Fine	Moderate	Mid-Ebb	M	5.3	15:41	10.34	8.46	31.07	22.5	3.81	4	113	0.29	SE
I6	20190212	Fine	Moderate	Mid-Ebb	M	5.3	15:41	10.35	8.3	30.53	22.7	3.9	2	114	0.29	SE
I6	20190212	Fine	Moderate	Mid-Ebb	S	1	15:42	10.34	8.27	30.51	22.6	3.86	3	114	0.25	SE
I6	20190212	Fine	Moderate	Mid-Ebb	S	1	15:42	10.37	8.43	30.63	22.5	3.76	4	113	0.26	SE
I7	20190212	Fine	Moderate	Mid-Ebb	В	9.9	15:34	10.18	8.26	30.08	22.5	3.71	5	114	0.41	SE
I7	20190212	Fine	Moderate	Mid-Ebb	В	9.9	15:34	10.37	8	30.16	22.7	3.74	6	114	0.41	SE
I7	20190212	Fine	Moderate	Mid-Ebb	M	5.5	15:34	10.34	8.35	30.94	22.6	3.79	6	113	0.32	SE
I7	20190212	Fine	Moderate	Mid-Ebb	M	5.5	15:35	10.14	8.01	30.87	22.6	3.81	5	112	0.33	SE
I7	20190212	Fine	Moderate	Mid-Ebb	S	1	15:35	10.26	8.12	30.14	22.7	3.79	4	113	0.2	SE
I7	20190212	Fine	Moderate	Mid-Ebb	S	1	15:36	10.17	8.02	30.61	22.6	3.73	3	112	0.22	SE
18	20190212	Fine	Moderate	Mid-Ebb	В	12.2	15:27	10.94	8.12	31.1	22.7	3.84	<2	113	0.37	SE
18	20190212	Fine	Moderate	Mid-Ebb	В	12.2	15:27	11.05	8.34	30.6	22.7	3.74	3	113	0.35	SE
18	20190212	Fine	Moderate	Mid-Ebb	M	6.6	15:28	11.13	8.01	31.05	22.7	3.64	3	113	0.26	SE
18	20190212	Fine	Moderate	Mid-Ebb	M	6.6	15:28	11.18	8	30.21	22.7	3.69	3	112	0.27	SE
18	20190212	Fine	Moderate	Mid-Ebb	S	1	15:28	10.98	8.15	30.36	22.5	3.76	5	112	0.16	SE
I8	20190212	Fine	Moderate	Mid-Ebb	S	1	15:29	10.85	8.35	30.62	22.5	3.85	4	114	0.18	SE
19	20190212	Fine	Moderate	Mid-Ebb	В	10.3	15:24	10.6	8.17	30.66	22.7	3.88	4	113	0.43	SE
19	20190212	Fine	Moderate	Mid-Ebb	В	10.3	15:25	10.76	8.19	30.19	22.7	3.79	3	114	0.42	SE
19	20190212	Fine	Moderate	Mid-Ebb	M	5.7	15:25	10.78	8.31	30.71	22.5	3.8	3	114	0.28	SE
19	20190212	Fine	Moderate	Mid-Ebb	M	5.7	15:25	10.97	8.45	30.88	22.5	3.76	2	114	0.29	SE
19	20190212	Fine	Moderate	Mid-Ebb	S	1	15:26	10.79	8.32	30.85	22.6	3.79	3	114	0.17	SE
I 9	20190212	Fine	Moderate	Mid-Ebb	S	1	15:26	10.77	8	30.1	22.5	3.73	3	114	0.17	SE
I10	20190212	Fine	Moderate	Mid-Ebb	В	10.3	15:19	10.67	8.22	30.6	22.7	3.75	4	113	0.39	SE
I10	20190212	Fine	Moderate	Mid-Ebb	В	10.3	15:19	10.56	8.13	31.09	22.5	3.78	4	113	0.41	SE
I10	20190212	Fine	Moderate	Mid-Ebb	M	5.7	15:19	10.71	8.32	30.79	22.7	3.73	4	113	0.31	SE
I10	20190212	Fine	Moderate	Mid-Ebb	M	5.7	15:20	10.77	8.38	30.43	22.5	3.69	3	113	0.33	SE
I10	20190212	Fine	Moderate	Mid-Ebb	S	1	15:20	10.83	8.17	30.93	22.7	3.64	5	113	0.21	SE
I10	20190212	Fine	Moderate	Mid-Ebb	S	1	15:20	11.01	8.46	30.86	22.7	3.73	5	113	0.2	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190213	Sunny	Calm	Mid-Flood	В	10	11:50	10.92	8.05	30.09	21.4	3.98	3	113	0.38	NW
UC1	20190213	Sunny	Calm	Mid-Flood	В	10	11:50	10.99	8.15	30.14	21.5	4.03	4	114	0.37	NW
UC1	20190213	Sunny	Calm	Mid-Flood	M	5.5	11:50	11	8.27	30.11	21.5	3.1	3	112	0.34	NW
UC1	20190213	Sunny	Calm	Mid-Flood	M	5.5	11:51	11.1	8.02	30.02	21.5	3.02	3	114	0.34	NW
UC1	20190213	Sunny	Calm	Mid-Flood	S	1	11:51	11.1	8.17	30.03	21.3	2.84	4	113	0.3	NW
UC1	20190213	Sunny	Calm	Mid-Flood	S	1	11:51	11.06	8.07	30.1	21.5	2.88	5	112	0.29	NW
UC2	20190213	Sunny	Calm	Mid-Flood	В	9.5	11:57	10.3	8.2	30.74	21.3	3.86	2	113	0.35	NW
UC2	20190213	Sunny	Calm	Mid-Flood	В	9.5	11:57	10.25	8.1	30.72	21.4	3.91	2	112	0.33	NW
UC2	20190213	Sunny	Calm	Mid-Flood	M	5.3	11:58	10.29	8.42	30.7	21.4	3.31	3	114	0.32	NW
UC2	20190213	Sunny	Calm	Mid-Flood	M	5.3	11:58	10.25	8.47	30.61	21.3	3.39	2	112	0.3	NW
UC2	20190213	Sunny	Calm	Mid-Flood	S	1	11:58	10.24	8.1	30.55	21.3	2.73	3	113	0.26	NW
UC2	20190213	Sunny	Calm	Mid-Flood	S	1	11:59	10.29	8.24	30.51	21.4	2.73	3	113	0.24	NW
I1	20190213	Sunny	Calm	Mid-Flood	В	9.7	12:06	10.64	8.4	30.29	21.5	3.86	4	112	0.39	NW
I1	20190213	Sunny	Calm	Mid-Flood	В	9.7	12:06	10.7	8.01	30.2	21.3	3.96	5	113	0.38	NW
I1	20190213	Sunny	Calm	Mid-Flood	M	5.4	12:07	10.74	8.13	30.16	21.3	3.27	4	113	0.34	NW
I1	20190213	Sunny	Calm	Mid-Flood	M	5.4	12:07	10.83	8.4	30.21	21.4	3.33	3	112	0.32	NW
I1	20190213	Sunny	Calm	Mid-Flood	S	1	12:08	10.93	8.04	30.23	21.3	2.9	3	113	0.29	NW
I1	20190213	Sunny	Calm	Mid-Flood	S	1	12:08	11.01	8.03	30.31	21.4	2.95	4	113	0.27	NW
I2	20190213	Sunny	Calm	Mid-Flood	В	9.6	12:10	10.38	8.07	30.82	21.5	3.74	5	112	0.37	NW
I2	20190213	Sunny	Calm	Mid-Flood	В	9.6	12:11	10.42	8.39	30.83	21.4	3.73	4	112	0.37	NW
I2	20190213	Sunny	Calm	Mid-Flood	M	5.3	12:11	10.32	8.04	30.76	21.3	3.48	4	114	0.34	NW
I2	20190213	Sunny	Calm	Mid-Flood	M	5.3	12:12	10.31	8.39	30.76	21.3	3.46	5	112	0.33	NW
I2	20190213	Sunny	Calm	Mid-Flood	S	1	12:12	10.39	8.19	30.86	21.4	2.57	3	112	0.26	NW
I2	20190213	Sunny	Calm	Mid-Flood	S	1	12:12	10.46	8.43	30.88	21.4	2.61	3	113	0.24	NW
I3	20190213	Sunny	Calm	Mid-Flood	В	10.3	12:14	10.02	8.26	30.89	21.3	3.97	5	112	0.4	NW
I3	20190213	Sunny	Calm	Mid-Flood	В	10.3	12:14	9.98	8.36	30.91	21.3	3.96	4	112	0.41	NW
I3	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:14	10.04	8.34	30.92	21.3	3.08	5	113	0.34	NW
I3	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:15	10.04	8.32	30.95	21.5	3.16	4	112	0.35	NW
I3	20190213	Sunny	Calm	Mid-Flood	S	1	12:15	10.14	8.21	30.86	21.3	2.66	4	112	0.26	NW
I3	20190213	Sunny	Calm	Mid-Flood	S	1	12:16	10.1	8.49	30.89	21.3	2.67	4	112	0.26	NW
I4	20190213	Sunny	Calm	Mid-Flood	В	10.2	12:18	10.24	8.02	30.92	21.5	3.54	5	114	0.38	NW
I4	20190213	Sunny	Calm	Mid-Flood	В	10.2	12:18	10.15	8.11	30.94	21.3	3.55	6	113	0.4	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I4	20190213	Sunny	Calm	Mid-Flood	M	5.6	12:19	10.2	8.1	30.88	21.5	3.03	5	113	0.35	NW
I4	20190213	Sunny	Calm	Mid-Flood	M	5.6	12:19	10.11	8.06	30.91	21.3	3.12	6	113	0.37	NW
I4	20190213	Sunny	Calm	Mid-Flood	S	1	12:20	10.1	8.16	30.82	21.4	2.55	6	112	0.29	NW
I4	20190213	Sunny	Calm	Mid-Flood	S	1	12:20	10.05	8.24	30.75	21.5	2.63	7	113	0.31	NW
I5	20190213	Sunny	Calm	Mid-Flood	В	10.6	12:21	10.15	8.27	30.46	21.5	3.72	10	113	0.37	NW
I5	20190213	Sunny	Calm	Mid-Flood	В	10.6	12:22	10.11	8.12	30.51	21.5	3.73	10	114	0.37	NW
I5	20190213	Sunny	Calm	Mid-Flood	M	5.8	12:22	10.02	8.05	30.55	21.3	3.4	9	113	0.32	NW
I5	20190213	Sunny	Calm	Mid-Flood	M	5.8	12:22	10.08	8.4	30.47	21.5	3.33	10	112	0.33	NW
I5	20190213	Sunny	Calm	Mid-Flood	S	1	12:23	10.17	8.11	30.57	21.4	2.79	11	112	0.3	NW
I5	20190213	Sunny	Calm	Mid-Flood	S	1	12:23	10.14	8.19	30.58	21.5	2.8	10	112	0.28	NW
I6	20190213	Sunny	Calm	Mid-Flood	В	10.3	12:45	10.15	8.17	30.71	21.4	3.64	6	113	0.4	NW
I6	20190213	Sunny	Calm	Mid-Flood	В	10.3	12:45	10.15	8.45	30.7	21.4	3.58	5	112	0.4	NW
I6	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:45	10.05	8.42	30.68	21.5	3.07	6	113	0.3	NW
I6	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:46	10	8.34	30.78	21.4	3.06	5	112	0.28	NW
I6	20190213	Sunny	Calm	Mid-Flood	S	1	12:46	10.09	8.04	30.73	21.5	2.69	9	113	0.27	NW
I6	20190213	Sunny	Calm	Mid-Flood	S	1	12:47	10.06	8.01	30.76	21.4	2.62	9	113	0.27	NW
I7	20190213	Sunny	Calm	Mid-Flood	В	9.8	12:39	10.95	8.19	30.57	21.5	3.95	6	112	0.36	NW
I7	20190213	Sunny	Calm	Mid-Flood	В	9.8	12:39	10.88	8.5	30.51	21.4	3.85	7	114	0.34	NW
I7	20190213	Sunny	Calm	Mid-Flood	M	5.4	12:40	10.86	8.35	30.49	21.5	3.32	8	111	0.31	NW
I7	20190213	Sunny	Calm	Mid-Flood	M	5.4	12:40	10.84	8.17	30.39	21.3	3.32	7	113	0.31	NW
I7	20190213	Sunny	Calm	Mid-Flood	S	1	12:40	10.85	8.04	30.42	21.5	2.92	7	113	0.3	NW
I7	20190213	Sunny	Calm	Mid-Flood	S	1	12:41	10.8	8.13	30.39	21.5	2.97	6	112	0.28	NW
18	20190213	Sunny	Calm	Mid-Flood	В	10.8	12:34	10.7	8.07	30.21	21.5	3.87	10	112	0.35	NW
I8	20190213	Sunny	Calm	Mid-Flood	В	10.8	12:35	10.7	8.05	30.15	21.4	3.79	8	113	0.35	NW
I8	20190213	Sunny	Calm	Mid-Flood	M	5.9	12:35	10.71	8.17	30.25	21.5	3.03	6	112	0.32	NW
18	20190213	Sunny	Calm	Mid-Flood	M	5.9	12:35	10.68	8.38	30.15	21.3	3.03	5	113	0.32	NW
18	20190213	Sunny	Calm	Mid-Flood	S	1	12:36	10.72	8.09	30.06	21.3	2.87	6	112	0.25	NW
18	20190213	Sunny	Calm	Mid-Flood	S	1	12:36	10.65	8.18	30.09	21.3	2.87	5	113	0.27	NW
I9	20190213	Sunny	Calm	Mid-Flood	В	10.4	12:30	10.98	8.22	30.61	21.5	3.89	5	114	0.37	NW
19	20190213	Sunny	Calm	Mid-Flood	В	10.4	12:30	10.9	8.44	30.67	21.4	3.79	5	112	0.38	NW
19	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:30	10.96	8.3	30.74	21.4	3.05	5	112	0.32	NW
19	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:31	10.95	8.06	30.76	21.4	3.01	5	112	0.3	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I9	20190213	Sunny	Calm	Mid-Flood	S	1	12:31	10.87	8.39	30.73	21.4	2.9	5	112	0.28	NW
I9	20190213	Sunny	Calm	Mid-Flood	S	1	12:31	10.95	8.4	30.74	21.3	2.99	5	114	0.27	NW
I10	20190213	Sunny	Calm	Mid-Flood	В	10.4	12:25	10.59	8.22	30.51	21.5	3.9	9	113	0.38	NW
I10	20190213	Sunny	Calm	Mid-Flood	В	10.4	12:25	10.66	8.1	30.48	21.4	3.82	10	113	0.38	NW
I10	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:26	10.71	8.18	30.46	21.3	3.3	9	113	0.31	NW
I10	20190213	Sunny	Calm	Mid-Flood	M	5.7	12:26	10.72	8.2	30.44	21.4	3.24	10	114	0.3	NW
I10	20190213	Sunny	Calm	Mid-Flood	S	1	12:26	10.76	8.19	30.49	21.5	2.69	9	112	0.25	NW
I10	20190213	Sunny	Calm	Mid-Flood	S	1	12:27	10.79	8.36	30.48	21.3	2.68	8	113	0.26	NW
UC1	20190213	Cloudy	Light	Mid-Ebb	В	10.7	17:16	10.9	8.48	30.48	21.5	3.57	10	114	0.38	SE
UC1	20190213	Cloudy	Light	Mid-Ebb	В	10.7	17:16	10.93	8.39	30.43	21.5	3.55	9	113	0.36	SE
UC1	20190213	Cloudy	Light	Mid-Ebb	M	5.9	17:16	11.01	8.18	30.5	21.3	3.44	7	114	0.31	SE
UC1	20190213	Cloudy	Light	Mid-Ebb	M	5.9	17:17	11.07	8.09	30.4	21.4	3.48	7	112	0.33	SE
UC1	20190213	Cloudy	Light	Mid-Ebb	S	1	17:17	11.13	8.05	30.31	21.4	2.72	9	113	0.26	SE
UC1	20190213	Cloudy	Light	Mid-Ebb	S	1	17:17	11.12	8.13	30.41	21.5	2.81	8	113	0.28	SE
UC2	20190213	Cloudy	Light	Mid-Ebb	В	10.8	17:22	10.01	8.41	30.33	21.5	3.71	7	113	0.36	SE
UC2	20190213	Cloudy	Light	Mid-Ebb	В	10.8	17:22	10.1	8.39	30.28	21.3	3.67	6	113	0.37	SE
UC2	20190213	Cloudy	Light	Mid-Ebb	M	5.9	17:23	10.05	8.14	30.36	21.4	3.34	5	114	0.34	SE
UC2	20190213	Cloudy	Light	Mid-Ebb	M	5.9	17:23	10.11	8.24	30.36	21.4	3.39	6	114	0.33	SE
UC2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:23	10.09	8.02	30.46	21.5	2.96	9	113	0.25	SE
UC2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:24	10.12	8.39	30.56	21.3	2.91	10	114	0.23	SE
I1	20190213	Cloudy	Light	Mid-Ebb	В	10.4	17:28	10.45	8.35	30.31	21.3	3.85	5	114	0.39	SE
I1	20190213	Cloudy	Light	Mid-Ebb	В	10.4	17:28	10.36	8.24	30.21	21.4	3.8	6	112	0.39	SE
I1	20190213	Cloudy	Light	Mid-Ebb	M	5.7	17:29	10.29	8.25	30.19	21.5	3.44	7	114	0.34	SE
I1	20190213	Cloudy	Light	Mid-Ebb	M	5.7	17:29	10.37	8.43	30.19	21.5	3.38	8	113	0.35	SE
I1	20190213	Cloudy	Light	Mid-Ebb	S	1	17:30	10.4	8.05	30.24	21.5	2.71	8	114	0.28	SE
I1	20190213	Cloudy	Light	Mid-Ebb	S	1	17:30	10.38	8.17	30.32	21.4	2.81	9	113	0.27	SE
I2	20190213	Cloudy	Light	Mid-Ebb	В	9.6	17:32	10.92	8	30.86	21.5	3.8	8	113	0.38	SE
12	20190213	Cloudy	Light	Mid-Ebb	В	9.6	17:33	10.96	8.23	30.91	21.3	3.72	9	114	0.37	SE
I2	20190213	Cloudy	Light	Mid-Ebb	M	5.3	17:33	10.86	8.41	30.93	21.3	3.35	7	114	0.35	SE
I2	20190213	Cloudy	Light	Mid-Ebb	M	5.3	17:34	10.84	8.22	30.9	21.4	3.36	8	114	0.37	SE
I2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:34	10.9	8.36	30.83	21.3	2.58	4	113	0.27	SE
I2	20190213	Cloudy	Light	Mid-Ebb	S	1	17:34	10.91	8.17	30.91	21.5	2.51	5	113	0.26	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I3	20190213	Cloudy	Light	Mid-Ebb	В	9.7	17:36	10.68	8.41	30.41	21.5	3.93	8	113	0.36	SE
I3	20190213	Cloudy	Light	Mid-Ebb	В	9.7	17:36	10.73	8.35	30.35	21.3	3.9	8	114	0.37	SE
I3	20190213	Cloudy	Light	Mid-Ebb	M	5.4	17:36	10.75	8.38	30.25	21.3	3.08	6	114	0.31	SE
I3	20190213	Cloudy	Light	Mid-Ebb	M	5.4	17:37	10.69	8.38	30.23	21.5	3.04	5	113	0.32	SE
I3	20190213	Cloudy	Light	Mid-Ebb	S	1	17:37	10.69	8.02	30.29	21.3	2.66	6	113	0.27	SE
I3	20190213	Cloudy	Light	Mid-Ebb	S	1	17:38	10.62	8.22	30.35	21.3	2.76	6	114	0.25	SE
I4	20190213	Cloudy	Light	Mid-Ebb	В	9.5	17:40	10.61	8.3	30.36	21.5	3.63	6	114	0.35	SE
I4	20190213	Cloudy	Light	Mid-Ebb	В	9.5	17:40	10.62	8.21	30.27	21.5	3.59	6	113	0.33	SE
I4	20190213	Cloudy	Light	Mid-Ebb	M	5.3	17:41	10.68	8.06	30.18	21.5	3.1	6	113	0.33	SE
I4	20190213	Cloudy	Light	Mid-Ebb	M	5.3	17:41	10.67	8.14	30.09	21.4	3.11	7	114	0.35	SE
I4	20190213	Cloudy	Light	Mid-Ebb	S	1	17:42	10.64	8.33	30.06	21.5	2.9	6	113	0.3	SE
I4	20190213	Cloudy	Light	Mid-Ebb	S	1	17:42	10.59	8.06	30.07	21.3	2.91	5	114	0.28	SE
I5	20190213	Cloudy	Light	Mid-Ebb	В	10	17:45	10.42	8.19	30.45	21.3	3.94	8	114	0.39	SE
I5	20190213	Cloudy	Light	Mid-Ebb	В	10	17:46	10.45	8.36	30.45	21.3	3.85	9	112	0.41	SE
I5	20190213	Cloudy	Light	Mid-Ebb	M	5.5	17:46	10.47	8.03	30.38	21.4	3.47	8	113	0.31	SE
I5	20190213	Cloudy	Light	Mid-Ebb	M	5.5	17:46	10.43	8.05	30.39	21.4	3.39	9	112	0.31	SE
I5	20190213	Cloudy	Light	Mid-Ebb	S	1	17:47	10.39	8.27	30.3	21.4	2.68	7	114	0.29	SE
I5	20190213	Cloudy	Light	Mid-Ebb	S	1	17:47	10.34	8.25	30.36	21.4	2.74	7	114	0.28	SE
I6	20190213	Cloudy	Light	Mid-Ebb	В	10.4	18:07	10.33	8.01	30.32	21.4	3.53	7	114	0.4	SE
I6	20190213	Cloudy	Light	Mid-Ebb	В	10.4	18:07	10.24	8.08	30.36	21.5	3.45	6	113	0.38	SE
I6	20190213	Cloudy	Light	Mid-Ebb	M	5.7	18:07	10.29	8.02	30.41	21.4	3	6	113	0.34	SE
I6	20190213	Cloudy	Light	Mid-Ebb	M	5.7	18:08	10.39	8.04	30.33	21.4	2.97	6	113	0.33	SE
I6	20190213	Cloudy	Light	Mid-Ebb	S	1	18:08	10.37	8.25	30.38	21.4	2.8	8	112	0.3	SE
I6	20190213	Cloudy	Light	Mid-Ebb	S	1	18:09	10.44	8.38	30.47	21.4	2.87	8	114	0.3	SE
I7	20190213	Cloudy	Light	Mid-Ebb	В	9.8	18:03	10.47	8.44	30.01	21.3	3.5	8	114	0.39	SE
I7	20190213	Cloudy	Light	Mid-Ebb	В	9.8	18:03	10.46	8.25	30	21.5	3.51	8	114	0.41	SE
I7	20190213	Cloudy	Light	Mid-Ebb	M	5.4	18:04	10.45	8.4	30.09	21.5	3.37	8	114	0.3	SE
I7	20190213	Cloudy	Light	Mid-Ebb	M	5.4	18:04	10.42	8.46	30.07	21.4	3.35	8	113	0.32	SE
I7	20190213	Cloudy	Light	Mid-Ebb	S	1	18:04	10.43	8.31	29.99	21.4	2.6	9	113	0.25	SE
I7	20190213	Cloudy	Light	Mid-Ebb	S	1	18:05	10.43	8.19	30.07	21.3	2.64	9	113	0.25	SE
18	20190213	Cloudy	Light	Mid-Ebb	В	10.1	17:58	10.08	8.29	31	21.5	4	3	114	0.36	SE
I8	20190213	Cloudy	Light	Mid-Ebb	В	10.1	17:59	9.98	8.41	30.94	21.5	3.9	3	113	0.34	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I8	20190213	Cloudy	Light	Mid-Ebb	M	5.6	17:59	10.04	8.18	30.96	21.3	3.33	5	113	0.3	SE
18	20190213	Cloudy	Light	Mid-Ebb	M	5.6	17:59	10.09	8.03	31	21.3	3.41	4	114	0.28	SE
I8	20190213	Cloudy	Light	Mid-Ebb	S	1	18:00	10.11	8.32	31.08	21.3	2.88	5	112	0.27	SE
I8	20190213	Cloudy	Light	Mid-Ebb	S	1	18:00	10.1	8.02	30.99	21.3	2.95	6	113	0.27	SE
I9	20190213	Cloudy	Light	Mid-Ebb	В	10	17:54	10.84	8.26	30.41	21.3	3.95	9	112	0.39	SE
I9	20190213	Cloudy	Light	Mid-Ebb	В	10	17:54	10.94	8.46	30.36	21.3	3.89	9	113	0.37	SE
I9	20190213	Cloudy	Light	Mid-Ebb	M	5.5	17:54	11.01	8.27	30.42	21.4	3.02	8	113	0.32	SE
I9	20190213	Cloudy	Light	Mid-Ebb	M	5.5	17:55	10.92	8.5	30.42	21.5	3.03	9	114	0.32	SE
I9	20190213	Cloudy	Light	Mid-Ebb	S	1	17:55	10.99	8.17	30.37	21.3	2.91	9	113	0.28	SE
19	20190213	Cloudy	Light	Mid-Ebb	S	1	17:55	11.09	8.34	30.32	21.5	2.99	8	114	0.3	SE
I10	20190213	Cloudy	Light	Mid-Ebb	В	10.8	17:49	10.88	8.1	30.87	21.3	3.8	6	114	0.39	SE
I10	20190213	Cloudy	Light	Mid-Ebb	В	10.8	17:49	10.89	8.25	30.81	21.5	3.83	7	114	0.37	SE
I10	20190213	Cloudy	Light	Mid-Ebb	M	5.9	17:50	10.83	8.37	30.71	21.3	3.35	6	113	0.32	SE
I10	20190213	Cloudy	Light	Mid-Ebb	M	5.9	17:50	10.93	8.31	30.8	21.3	3.32	6	112	0.32	SE
I10	20190213	Cloudy	Light	Mid-Ebb	S	1	17:50	10.89	8.37	30.7	21.4	2.93	6	114	0.26	SE
I10	20190213	Cloudy	Light	Mid-Ebb	S	1	17:51	10.91	8.29	30.68	21.5	2.85	6	113	0.25	SE
UC1	20190214	Sunny	Light	Mid-Flood	В	10.5	13:06	10.44	8.38	29.34	25	3.7	4	112	0.36	NW
UC1	20190214	Sunny	Light	Mid-Flood	В	10.5	13:06	10.54	8.14	29.71	25.2	3.63	3	111	0.34	NW
UC1	20190214	Sunny	Light	Mid-Flood	M	5.8	13:06	10.45	8.1	29.73	25	3.44	4	112	0.32	NW
UC1	20190214	Sunny	Light	Mid-Flood	M	5.8	13:07	10.54	8.17	29.98	25.1	3.45	4	112	0.34	NW
UC1	20190214	Sunny	Light	Mid-Flood	S	1	13:07	10.59	8.4	29.59	25.1	2.84	2	112	0.3	NW
UC1	20190214	Sunny	Light	Mid-Flood	S	1	13:07	10.61	8.45	29.41	25.2	2.78	3	113	0.32	NW
UC2	20190214	Sunny	Light	Mid-Flood	В	10	13:11	9.84	8.24	29.46	25	3.84	4	113	0.4	NW
UC2	20190214	Sunny	Light	Mid-Flood	В	10	13:11	9.88	8.42	29.65	25.2	3.81	5	112	0.4	NW
UC2	20190214	Sunny	Light	Mid-Flood	M	5.5	13:12	9.88	8.08	29.8	25.1	3.39	5	113	0.33	NW
UC2	20190214	Sunny	Light	Mid-Flood	M	5.5	13:12	9.79	8.19	29.29	25.2	3.4	4	112	0.31	NW
UC2	20190214	Sunny	Light	Mid-Flood	S	1	13:12	9.84	8.22	29.28	25.1	2.92	5	111	0.25	NW
UC2	20190214	Sunny	Light	Mid-Flood	S	1	13:13	9.94	8.46	29.2	25.2	2.85	6	112	0.27	NW
I1	20190214	Sunny	Light	Mid-Flood	В	9.8	13:18	9.81	8.06	29.99	25	3.62	5	112	0.37	NW
I1	20190214	Sunny	Light	Mid-Flood	В	9.8	13:18	9.72	8.06	29.46	25.1	3.67	5	112	0.37	NW
I1	20190214	Sunny	Light	Mid-Flood	M	5.4	13:19	9.73	8.19	29.86	25.1	3.12	5	113	0.34	NW
I1	20190214	Sunny	Light	Mid-Flood	M	5.4	13:19	9.68	8.13	29.31	25.1	3.19	5	112	0.34	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190214	Sunny	Light	Mid-Flood	S	1	13:20	9.71	8.13	29.6	25	2.67	6	113	0.27	NW
I1	20190214	Sunny	Light	Mid-Flood	S	1	13:20	9.81	8	29.31	25.1	2.72	5	113	0.26	NW
I2	20190214	Sunny	Light	Mid-Flood	В	9.5	13:22	9.5	8.5	29.73	25	3.71	6	113	0.37	NW
I2	20190214	Sunny	Light	Mid-Flood	В	9.5	13:23	9.52	8.11	29.96	25.2	3.64	7	113	0.37	NW
I2	20190214	Sunny	Light	Mid-Flood	M	5.3	13:23	9.5	8.5	29.7	25	3.31	6	113	0.34	NW
I2	20190214	Sunny	Light	Mid-Flood	M	5.3	13:24	9.48	8.28	29.02	25.1	3.27	7	113	0.36	NW
I2	20190214	Sunny	Light	Mid-Flood	S	1	13:24	9.5	8.31	29.73	25.1	2.82	7	112	0.26	NW
I2	20190214	Sunny	Light	Mid-Flood	S	1	13:24	9.44	8.18	29.6	25.2	2.79	7	112	0.27	NW
I3	20190214	Sunny	Light	Mid-Flood	В	10.5	13:26	9.9	8.06	29.56	25.1	3.54	5	113	0.36	NW
I3	20190214	Sunny	Light	Mid-Flood	В	10.5	13:26	9.96	8.23	29.8	25.2	3.53	4	114	0.38	NW
I3	20190214	Sunny	Light	Mid-Flood	M	5.8	13:26	9.92	8.31	29.42	25.1	3.2	3	112	0.3	NW
I3	20190214	Sunny	Light	Mid-Flood	M	5.8	13:27	10.01	8.25	29.05	25	3.2	4	113	0.3	NW
I3	20190214	Sunny	Light	Mid-Flood	S	1	13:27	10.11	8.48	29.2	25	2.91	4	111	0.3	NW
I3	20190214	Sunny	Light	Mid-Flood	S	1	13:28	10.02	8.23	29.06	25.1	2.94	4	112	0.32	NW
I4	20190214	Sunny	Light	Mid-Flood	В	9.5	13:31	10.47	8.17	29.44	25.1	3.77	7	113	0.37	NW
I4	20190214	Sunny	Light	Mid-Flood	В	9.5	13:31	10.44	8.06	29.46	25	3.79	7	112	0.39	NW
I4	20190214	Sunny	Light	Mid-Flood	M	5.3	13:32	10.44	8.46	29.15	25.1	3.07	5	113	0.32	NW
I4	20190214	Sunny	Light	Mid-Flood	M	5.3	13:32	10.34	8.19	29.29	25	3.15	6	113	0.3	NW
I4	20190214	Sunny	Light	Mid-Flood	S	1	13:33	10.35	8.07	29.91	25.1	2.66	7	113	0.28	NW
I4	20190214	Sunny	Light	Mid-Flood	S	1	13:33	10.38	8.31	29.37	25	2.68	6	112	0.3	NW
I5	20190214	Sunny	Light	Mid-Flood	В	9.6	13:35	9.51	8.01	29.73	25.1	3.78	5	114	0.39	NW
I5	20190214	Sunny	Light	Mid-Flood	В	9.6	13:36	9.55	8.2	29.19	25.1	3.69	4	112	0.41	NW
I5	20190214	Sunny	Light	Mid-Flood	M	5.3	13:36	9.46	8.02	29.1	25	3.28	5	112	0.33	NW
I5	20190214	Sunny	Light	Mid-Flood	M	5.3	13:36	9.55	8.06	29.56	25	3.18	4	112	0.31	NW
I5	20190214	Sunny	Light	Mid-Flood	S	1	13:37	9.49	8.34	29.38	25.1	2.89	6	114	0.27	NW
I5	20190214	Sunny	Light	Mid-Flood	S	1	13:37	9.42	8.18	29.45	25	2.84	6	113	0.25	NW
I6	20190214	Sunny	Light	Mid-Flood	В	9	14:01	9.77	8.19	29.06	25.2	3.91	5	113	0.36	NW
I6	20190214	Sunny	Light	Mid-Flood	В	9	14:01	9.79	8.26	29.52	25.2	3.87	4	114	0.37	NW
I6	20190214	Sunny	Light	Mid-Flood	M	5	14:01	9.72	8.01	29.61	25.1	3.29	5	112	0.3	NW
I6	20190214	Sunny	Light	Mid-Flood	M	5	14:02	9.64	8.44	29.81	25.1	3.31	4	114	0.29	NW
I6	20190214	Sunny	Light	Mid-Flood	S	1	14:02	9.7	8.36	29.71	25.1	2.68	5	114	0.26	NW
I6	20190214	Sunny	Light	Mid-Flood	S	1	14:03	9.6	8.5	29.69	25.2	2.78	6	112	0.27	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
17	20190214	Sunny	Light	Mid-Flood	В	9.7	13:57	10.5	8.12	29.62	25.1	3.65	4	112	0.4	NW
17	20190214	Sunny	Light	Mid-Flood	В	9.7	13:57	10.49	8.35	29.12	25	3.6	6	114	0.41	NW
I7	20190214	Sunny	Light	Mid-Flood	M	5.4	13:58	10.47	8.32	29.4	25.1	3.21	6	112	0.32	NW
I7	20190214	Sunny	Light	Mid-Flood	M	5.4	13:58	10.4	8.43	29.44	25.2	3.11	5	113	0.32	NW
I7	20190214	Sunny	Light	Mid-Flood	S	1	13:58	10.45	8.13	29.8	25.2	2.63	7	113	0.29	NW
I7	20190214	Sunny	Light	Mid-Flood	S	1	13:59	10.43	8.04	29.3	25.2	2.57	7	113	0.31	NW
18	20190214	Sunny	Light	Mid-Flood	В	9.4	13:52	10.27	8.34	29.91	25.2	3.73	6	113	0.38	NW
18	20190214	Sunny	Light	Mid-Flood	В	9.4	13:53	10.33	8.17	29.75	25	3.68	6	112	0.39	NW
I8	20190214	Sunny	Light	Mid-Flood	M	5.2	13:53	10.32	8.06	29.31	25.1	3.28	4	113	0.31	NW
I8	20190214	Sunny	Light	Mid-Flood	M	5.2	13:53	10.35	8.25	29.93	25.1	3.28	5	113	0.31	NW
I8	20190214	Sunny	Light	Mid-Flood	S	1	13:54	10.29	8.22	29.6	25.1	2.91	3	113	0.25	NW
18	20190214	Sunny	Light	Mid-Flood	S	1	13:54	10.32	8.3	29.06	25.1	2.98	3	112	0.25	NW
19	20190214	Sunny	Light	Mid-Flood	В	9.9	13:46	10.26	8.45	29.86	25	3.63	6	114	0.35	NW
19	20190214	Sunny	Light	Mid-Flood	В	9.9	13:46	10.26	8.23	29.81	25	3.64	7	113	0.37	NW
I9	20190214	Sunny	Light	Mid-Flood	M	5.5	13:46	10.32	8.1	29.04	25.2	3.44	6	112	0.35	NW
19	20190214	Sunny	Light	Mid-Flood	M	5.5	13:47	10.27	8.14	29.98	25	3.48	6	114	0.37	NW
I9	20190214	Sunny	Light	Mid-Flood	S	1	13:47	10.2	8.3	29.08	25	2.73	4	111	0.26	NW
I9	20190214	Sunny	Light	Mid-Flood	S	1	13:47	10.16	8.37	29.02	25.1	2.79	4	113	0.26	NW
I10	20190214	Sunny	Light	Mid-Flood	В	10.2	13:39	10.39	8.33	29.24	25.2	3.69	6	112	0.4	NW
I10	20190214	Sunny	Light	Mid-Flood	В	10.2	13:39	10.43	8.09	29.5	25.2	3.75	6	113	0.42	NW
I10	20190214	Sunny	Light	Mid-Flood	M	5.6	13:40	10.48	8.02	29.87	25.2	3.46	9	112	0.33	NW
I10	20190214	Sunny	Light	Mid-Flood	M	5.6	13:40	10.51	8.21	29.68	25.2	3.52	8	114	0.34	NW
I10	20190214	Sunny	Light	Mid-Flood	S	1	13:40	10.44	8.21	29.34	25.1	2.51	8	113	0.25	NW
I10	20190214	Sunny	Light	Mid-Flood	S	1	13:41	10.34	8.06	29.66	25.1	2.41	8	112	0.23	NW
UC1	20190214	Cloudy	Moderate	Mid-Ebb	В	9.8	17:03	9.55	8.27	29.08	25	3.58	7	113	0.35	SE
UC1	20190214	Cloudy	Moderate	Mid-Ebb	В	9.8	17:03	9.45	8.28	29.25	25.1	3.55	8	114	0.34	SE
UC1	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:04	9.45	8.05	29.29	25.1	3.19	4	113	0.32	SE
UC1	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:04	9.35	8.12	29.27	25.2	3.28	5	113	0.33	SE
UC1	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:05	9.38	8.02	29.28	25	2.64	3	113	0.27	SE
UC1	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:05	9.42	8.3	29.58	25.2	2.55	3	112	0.29	SE
UC2	20190214	Cloudy	Moderate	Mid-Ebb	В	10.2	17:08	10.33	8.15	29.53	25.2	3.93	3	114	0.39	SE
UC2	20190214	Cloudy	Moderate	Mid-Ebb	В	10.2	17:09	10.3	8.3	29.88	25.1	3.86	4	113	0.38	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190214	Cloudy	Moderate	Mid-Ebb	M	5.6	17:09	10.34	8.2	29.76	25	3.24	6	113	0.35	SE
UC2	20190214	Cloudy	Moderate	Mid-Ebb	M	5.6	17:10	10.32	8.3	29.13	25	3.24	5	114	0.33	SE
UC2	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:10	10.28	8.09	29.6	25.2	2.59	4	113	0.26	SE
UC2	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:10	10.33	8.42	29.48	25.1	2.68	6	113	0.25	SE
I1	20190214	Cloudy	Moderate	Mid-Ebb	В	10.5	17:13	10.14	8.29	29.56	25.2	3.53	<2	112	0.38	SE
I1	20190214	Cloudy	Moderate	Mid-Ebb	В	10.5	17:13	10.24	8.34	29.8	25.1	3.61	<2	113	0.4	SE
I1	20190214	Cloudy	Moderate	Mid-Ebb	M	5.8	17:13	10.34	8.12	29.13	25.1	3.38	<2	113	0.3	SE
I1	20190214	Cloudy	Moderate	Mid-Ebb	M	5.8	17:14	10.35	8.34	29.92	25.1	3.33	2	114	0.28	SE
I1	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:14	10.29	8.46	29.56	25	2.87	2	112	0.25	SE
I1	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:15	10.3	8.2	29.06	25.1	2.95	2	113	0.23	SE
I2	20190214	Cloudy	Moderate	Mid-Ebb	В	9.7	17:17	10.42	8.01	29.47	25.2	3.91	5	112	0.37	SE
I2	20190214	Cloudy	Moderate	Mid-Ebb	В	9.7	17:17	10.32	8.47	29.05	25.1	3.9	4	112	0.35	SE
I2	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:18	10.38	8.41	29.15	25.1	3.44	3	112	0.3	SE
I2	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:18	10.32	8.06	29.26	25	3.42	3	113	0.29	SE
I2	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:19	10.24	8.31	29.73	25.2	2.89	2	113	0.3	SE
I2	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:19	10.26	8.22	30	25.1	2.84	3	114	0.31	SE
I3	20190214	Cloudy	Moderate	Mid-Ebb	В	10.3	17:22	10.49	8.24	29.04	25.2	3.66	4	112	0.38	SE
I3	20190214	Cloudy	Moderate	Mid-Ebb	В	10.3	17:23	10.47	8.35	29.6	25.1	3.6	5	112	0.39	SE
I3	20190214	Cloudy	Moderate	Mid-Ebb	M	5.7	17:23	10.37	8.2	29.71	25.2	3.47	4	111	0.32	SE
I3	20190214	Cloudy	Moderate	Mid-Ebb	M	5.7	17:23	10.36	8.49	29.4	25.1	3.54	4	112	0.3	SE
I3	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:24	10.46	8.44	29.54	25.2	3	4	113	0.26	SE
I3	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:24	10.37	8.04	29.69	25.1	3.06	4	112	0.27	SE
I4	20190214	Cloudy	Moderate	Mid-Ebb	В	10.4	17:26	10.19	8.44	29.17	25.2	3.82	6	112	0.37	SE
I4	20190214	Cloudy	Moderate	Mid-Ebb	В	10.4	17:26	10.11	8.09	29.48	25.2	3.78	7	112	0.37	SE
I4	20190214	Cloudy	Moderate	Mid-Ebb	M	5.7	17:26	10.06	8.33	29.1	25	3.12	4	113	0.35	SE
I4	20190214	Cloudy	Moderate	Mid-Ebb	M	5.7	17:27	10.09	8.3	29.7	25.1	3.04	5	113	0.34	SE
I4	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:27	10.11	8.12	29.9	25.1	2.66	3	112	0.3	SE
I4	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:28	10.15	8.17	29.84	25	2.63	3	113	0.29	SE
I5	20190214	Cloudy	Moderate	Mid-Ebb	В	9.6	17:31	9.78	8.21	29.65	25.2	3.81	2	112	0.39	SE
I5	20190214	Cloudy	Moderate	Mid-Ebb	В	9.6	17:31	9.68	8.48	29.37	25	3.78	<2	112	0.41	SE
I5	20190214	Cloudy	Moderate	Mid-Ebb	M	5.3	17:32	9.61	8.22	29.93	25.2	3	5	112	0.31	SE
I5	20190214	Cloudy	Moderate	Mid-Ebb	M	5.3	17:32	9.63	8.45	29.92	25.2	3.03	4	112	0.33	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:32	9.6	8.05	29.03	25.2	2.68	5	112	0.25	SE
I5	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:33	9.5	8.03	29.13	25.1	2.61	5	112	0.27	SE
I6	20190214	Cloudy	Moderate	Mid-Ebb	В	10.5	17:55	9.8	8.31	29.11	25	3.9	3	114	0.36	SE
I6	20190214	Cloudy	Moderate	Mid-Ebb	В	10.5	17:56	9.83	8.02	29.73	25.1	3.82	4	113	0.35	SE
I6	20190214	Cloudy	Moderate	Mid-Ebb	M	5.8	17:56	9.84	8.27	29.49	25	3.36	<2	113	0.3	SE
I6	20190214	Cloudy	Moderate	Mid-Ebb	M	5.8	17:56	9.92	8.06	29.5	25.2	3.39	<2	112	0.3	SE
I6	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:57	9.98	8.49	29.77	25	2.95	<2	113	0.3	SE
I6	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:57	10.07	8.43	29.17	25.2	2.85	<2	112	0.31	SE
I7	20190214	Cloudy	Moderate	Mid-Ebb	В	9.7	17:48	10.41	8	29.46	25.2	3.8	4	114	0.39	SE
I7	20190214	Cloudy	Moderate	Mid-Ebb	В	9.7	17:48	10.51	8.35	29.65	25.1	3.7	5	113	0.4	SE
I7	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:48	10.52	8.18	29.27	25	3.36	5	113	0.3	SE
I7	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:49	10.43	8.25	29.5	25.1	3.35	5	113	0.32	SE
I7	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:49	10.38	8.22	29.48	25.1	2.94	4	113	0.26	SE
I7	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:49	10.4	8.33	29.44	25.2	2.87	5	113	0.25	SE
18	20190214	Cloudy	Moderate	Mid-Ebb	В	9.8	17:44	10.17	8.37	29.69	25.2	3.72	7	114	0.39	SE
18	20190214	Cloudy	Moderate	Mid-Ebb	В	9.8	17:44	10.15	8.36	29.13	25.1	3.62	7	112	0.37	SE
18	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:45	10.21	8	29.31	25	3.26	8	114	0.35	SE
18	20190214	Cloudy	Moderate	Mid-Ebb	M	5.4	17:45	10.17	8.04	29.73	25.2	3.3	8	113	0.34	SE
18	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:45	10.18	8.28	29.28	25.2	2.69	8	113	0.25	SE
I8	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:46	10.15	8.37	29.16	25.2	2.75	8	113	0.25	SE
19	20190214	Cloudy	Moderate	Mid-Ebb	В	10.5	17:40	9.53	8.44	29.68	25.1	3.68	11	114	0.4	SE
19	20190214	Cloudy	Moderate	Mid-Ebb	В	10.5	17:40	9.48	8.06	29.68	25.1	3.75	9	113	0.38	SE
19	20190214	Cloudy	Moderate	Mid-Ebb	M	5.8	17:41	9.56	8.31	29.31	25.2	3.36	9	112	0.33	SE
I 9	20190214	Cloudy	Moderate	Mid-Ebb	M	5.8	17:41	9.59	8.22	29.07	25.2	3.36	10	113	0.31	SE
I9	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:42	9.69	8.32	29.28	25.2	2.55	10	113	0.26	SE
19	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:42	9.71	8.46	29.69	25.2	2.64	11	113	0.27	SE
I10	20190214	Cloudy	Moderate	Mid-Ebb	В	10.2	17:36	10.08	8.22	29.29	25	3.92	13	113	0.38	SE
I10	20190214	Cloudy	Moderate	Mid-Ebb	В	10.2	17:37	9.99	8.36	29.74	25.2	3.94	12	113	0.38	SE
I10	20190214	Cloudy	Moderate	Mid-Ebb	M	5.6	17:37	9.96	8.11	29.51	25.1	3.39	12	114	0.33	SE
I10	20190214	Cloudy	Moderate	Mid-Ebb	M	5.6	17:38	9.97	8.5	29.11	25.2	3.45	12	113	0.34	SE
I10	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:38	9.97	8.13	29.91	25.2	2.51	9	113	0.28	SE
I10	20190214	Cloudy	Moderate	Mid-Ebb	S	1	17:38	10.02	8.38	29.11	25	2.41	8	112	0.29	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190215	Cloudy	Light	Mid-Ebb	В	9.5	8:48	11.45	8.26	30.93	22.7	4.37	4	114	0.35	NW
UC1	20190215	Cloudy	Light	Mid-Ebb	В	9.5	8:48	11.37	8.44	30.01	22.6	4.31	4	114	0.34	NW
UC1	20190215	Cloudy	Light	Mid-Ebb	M	5.3	8:48	11.29	8.39	30.89	22.8	3.74	5	113	0.32	NW
UC1	20190215	Cloudy	Light	Mid-Ebb	M	5.3	8:49	11.4	8.33	30.21	22.8	3.81	4	115	0.3	NW
UC1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:49	11.46	8.3	30.89	22.7	3.1	3	114	0.22	NW
UC1	20190215	Cloudy	Light	Mid-Ebb	S	1	8:49	11.3	8.43	30.55	22.8	3.08	4	115	0.24	NW
UC2	20190215	Cloudy	Light	Mid-Ebb	В	10.3	8:53	11.39	8.16	30.22	22.6	4.24	4	115	0.36	NW
UC2	20190215	Cloudy	Light	Mid-Ebb	В	10.3	8:53	11.48	8.02	30.41	22.8	4.2	2	116	0.36	NW
UC2	20190215	Cloudy	Light	Mid-Ebb	M	5.7	8:54	11.53	8.45	30.52	22.7	3.5	3	114	0.3	NW
UC2	20190215	Cloudy	Light	Mid-Ebb	M	5.7	8:54	11.68	8.03	30.14	22.6	3.58	3	115	0.29	NW
UC2	20190215	Cloudy	Light	Mid-Ebb	S	1	8:54	11.65	8.25	30.92	22.8	3.27	<2	115	0.17	NW
UC2	20190215	Cloudy	Light	Mid-Ebb	S	1	8:55	11.61	8.49	30.86	22.7	3.25	2	115	0.16	NW
I1	20190215	Cloudy	Light	Mid-Ebb	В	10.9	9:00	11.74	8.24	30.73	22.8	4.06	3	115	0.42	NW
I1	20190215	Cloudy	Light	Mid-Ebb	В	10.9	9:00	11.73	8.31	30.98	22.7	4.16	<2	114	0.43	NW
I1	20190215	Cloudy	Light	Mid-Ebb	M	6	9:01	11.76	8.19	30.57	22.8	3.57	4	114	0.28	NW
I 1	20190215	Cloudy	Light	Mid-Ebb	M	6	9:01	11.65	8.22	30.27	22.6	3.67	<2	116	0.29	NW
I1	20190215	Cloudy	Light	Mid-Ebb	S	1	9:02	11.59	8.32	30.41	22.7	3.47	<2	117	0.2	NW
I1	20190215	Cloudy	Light	Mid-Ebb	S	1	9:02	11.78	8.36	30.27	22.8	3.4	4	116	0.2	NW
I2	20190215	Cloudy	Light	Mid-Ebb	В	10.7	9:04	11.59	8.46	30.27	22.7	4.16	4	116	0.37	NW
I2	20190215	Cloudy	Light	Mid-Ebb	В	10.7	9:05	11.59	8.03	30.1	22.8	4.06	5	115	0.36	NW
I2	20190215	Cloudy	Light	Mid-Ebb	M	5.9	9:05	11.65	8.45	30.28	22.8	3.63	5	115	0.3	NW
I2	20190215	Cloudy	Light	Mid-Ebb	M	5.9	9:06	11.52	8.38	30.21	22.8	3.56	4	116	0.28	NW
I2	20190215	Cloudy	Light	Mid-Ebb	S	1	9:06	11.4	8.48	30.35	22.6	3.26	<2	115	0.15	NW
I2	20190215	Cloudy	Light	Mid-Ebb	S	1	9:06	11.31	8.37	30.48	22.6	3.2	3	116	0.17	NW
I3	20190215	Cloudy	Light	Mid-Ebb	В	10.2	9:10	11.72	8.07	30.9	22.8	4.29	5	113	0.35	NW
I3	20190215	Cloudy	Light	Mid-Ebb	В	10.2	9:10	11.8	8.09	30.56	22.8	4.21	5	115	0.35	NW
I3	20190215	Cloudy	Light	Mid-Ebb	M	5.6	9:10	11.86	8.18	30.83	22.8	3.83	5	114	0.27	NW
I3	20190215	Cloudy	Light	Mid-Ebb	M	5.6	9:11	11.68	8.44	30.55	22.7	3.86	4	114	0.26	NW
I3	20190215	Cloudy	Light	Mid-Ebb	S	1	9:11	11.71	8.23	30.9	22.8	3.37	3	115	0.24	NW
I3	20190215	Cloudy	Light	Mid-Ebb	S	1	9:12	11.91	8	30.76	22.6	3.27	<2	113	0.22	NW
I4	20190215	Cloudy	Light	Mid-Ebb	В	10.7	9:14	11.36	8.17	30.35	22.6	4.12	<2	116	0.35	NW
I4	20190215	Cloudy	Light	Mid-Ebb	В	10.7	9:14	11.42	8.09	31	22.8	4.05	2	116	0.36	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I4	20190215	Cloudy	Light	Mid-Ebb	M	5.9	9:15	11.35	8.47	30	22.6	3.93	2	114	0.27	NW
I4	20190215	Cloudy	Light	Mid-Ebb	M	5.9	9:15	11.23	8.41	30.43	22.6	3.91	<2	115	0.28	NW
I4	20190215	Cloudy	Light	Mid-Ebb	S	1	9:16	11.23	8.47	30.22	22.6	3.15	4	115	0.16	NW
I4	20190215	Cloudy	Light	Mid-Ebb	S	1	9:16	11.14	8.37	30.77	22.7	3.13	4	115	0.18	NW
I5	20190215	Cloudy	Light	Mid-Ebb	В	10.5	9:19	11.99	8.26	30.87	22.6	4.44	4	113	0.38	NW
I5	20190215	Cloudy	Light	Mid-Ebb	В	10.5	9:20	12.09	8.09	30.46	22.8	4.49	3	113	0.38	NW
I5	20190215	Cloudy	Light	Mid-Ebb	M	5.8	9:20	12.18	8.41	30.94	22.6	3.53	<2	114	0.34	NW
I5	20190215	Cloudy	Light	Mid-Ebb	M	5.8	9:20	12.22	8.39	30.04	22.7	3.61	2	116	0.36	NW
I5	20190215	Cloudy	Light	Mid-Ebb	S	1	9:21	12.08	8.19	30.48	22.7	3.24	3	115	0.21	NW
I5	20190215	Cloudy	Light	Mid-Ebb	S	1	9:21	12.03	8.43	30.12	22.8	3.3	2	115	0.2	NW
I6	20190215	Cloudy	Light	Mid-Ebb	В	9.2	9:45	11.92	8.14	30.49	22.7	4.2	2	115	0.4	NW
I6	20190215	Cloudy	Light	Mid-Ebb	В	9.2	9:45	12.02	8.16	30.7	22.7	4.11	<2	114	0.38	NW
I6	20190215	Cloudy	Light	Mid-Ebb	M	5.1	9:45	12.08	8.27	30.33	22.6	3.52	<2	114	0.3	NW
I6	20190215	Cloudy	Light	Mid-Ebb	M	5.1	9:46	12.01	8.47	30.74	22.7	3.55	3	115	0.32	NW
I6	20190215	Cloudy	Light	Mid-Ebb	S	1	9:46	12.04	8.43	30	22.8	3.48	<2	114	0.17	NW
I6	20190215	Cloudy	Light	Mid-Ebb	S	1	9:47	12.17	8.22	30.24	22.8	3.47	3	115	0.19	NW
I7	20190215	Cloudy	Light	Mid-Ebb	В	10.4	9:39	11.4	8.05	30.23	22.8	4.41	5	114	0.36	NW
I7	20190215	Cloudy	Light	Mid-Ebb	В	10.4	9:39	11.49	8.32	30.14	22.8	4.47	5	115	0.35	NW
I7	20190215	Cloudy	Light	Mid-Ebb	M	5.7	9:40	11.33	8.12	30.09	22.8	3.96	<2	115	0.35	NW
I7	20190215	Cloudy	Light	Mid-Ebb	M	5.7	9:40	11.52	8.48	30.93	22.7	4.05	3	114	0.34	NW
I7	20190215	Cloudy	Light	Mid-Ebb	S	1	9:40	11.45	8.21	30.48	22.6	3.48	2	114	0.21	NW
I7	20190215	Cloudy	Light	Mid-Ebb	S	1	9:41	11.38	8.49	30.99	22.8	3.4	<2	114	0.23	NW
18	20190215	Cloudy	Light	Mid-Ebb	В	9.8	9:35	11.57	8.39	30.08	22.7	4.46	3	115	0.44	NW
18	20190215	Cloudy	Light	Mid-Ebb	В	9.8	9:36	11.64	8.16	30.53	22.7	4.38	4	116	0.42	NW
18	20190215	Cloudy	Light	Mid-Ebb	M	5.4	9:36	11.54	8.3	30.27	22.8	3.77	3	114	0.29	NW
18	20190215	Cloudy	Light	Mid-Ebb	M	5.4	9:36	11.74	8.07	30.99	22.8	3.83	2	115	0.27	NW
18	20190215	Cloudy	Light	Mid-Ebb	S	1	9:37	11.67	8.02	30.58	22.6	3.1	4	113	0.18	NW
I8	20190215	Cloudy	Light	Mid-Ebb	S	1	9:37	11.7	8.36	30.09	22.7	3.04	4	114	0.18	NW
I9	20190215	Cloudy	Light	Mid-Ebb	В	10.9	9:30	11.65	8.48	30.72	22.6	4.33	3	114	0.4	NW
I9	20190215	Cloudy	Light	Mid-Ebb	В	10.9	9:30	11.47	8.45	30.8	22.7	4.26	3	116	0.38	NW
19	20190215	Cloudy	Light	Mid-Ebb	M	6	9:30	11.6	8.15	30.66	22.8	3.67	<2	114	0.34	NW
I9	20190215	Cloudy	Light	Mid-Ebb	M	6	9:31	11.65	8.12	30.05	22.7	3.71	2	116	0.36	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
19	20190215	Cloudy	Light	Mid-Ebb	S	1	9:31	11.47	8.03	30.21	22.8	3.45	3	114	0.16	NW
19	20190215	Cloudy	Light	Mid-Ebb	S	1	9:31	11.31	8.36	30.64	22.6	3.41	2	114	0.18	NW
I10	20190215	Cloudy	Light	Mid-Ebb	В	10.5	9:24	11.02	8.29	30.95	22.8	4.16	3	115	0.45	NW
I10	20190215	Cloudy	Light	Mid-Ebb	В	10.5	9:24	11.02	8.29	30.53	22.8	4.25	<2	116	0.47	NW
I10	20190215	Cloudy	Light	Mid-Ebb	M	5.8	9:25	11.21	8.15	30.4	22.7	3.5	3	115	0.34	NW
I10	20190215	Cloudy	Light	Mid-Ebb	M	5.8	9:25	11.41	8.04	30.28	22.8	3.5	3	113	0.34	NW
I10	20190215	Cloudy	Light	Mid-Ebb	S	1	9:25	11.39	8.39	30.88	22.6	3.25	<2	114	0.22	NW
I10	20190215	Cloudy	Light	Mid-Ebb	S	1	9:26	11.44	8.13	30.08	22.6	3.24	<2	115	0.22	NW
UC1	20190215	Sunny	Calm	Mid-Flood	В	10.5	12:40	11.56	8.35	30.5	22.7	4.25	<2	115	0.41	SE
UC1	20190215	Sunny	Calm	Mid-Flood	В	10.5	12:40	11.63	8.08	30.5	22.6	4.18	<2	115	0.4	SE
UC1	20190215	Sunny	Calm	Mid-Flood	M	5.8	12:41	11.51	8.3	30.68	22.8	3.86	<2	116	0.33	SE
UC1	20190215	Sunny	Calm	Mid-Flood	M	5.8	12:41	11.33	8.45	30.03	22.6	3.96	2	116	0.32	SE
UC1	20190215	Sunny	Calm	Mid-Flood	S	1	12:42	11.44	8.03	30.66	22.6	3.44	3	115	0.25	SE
UC1	20190215	Sunny	Calm	Mid-Flood	S	1	12:42	11.39	8.13	30.82	22.7	3.34	2	116	0.26	SE
UC2	20190215	Sunny	Calm	Mid-Flood	В	10.3	12:45	11.88	8.24	30.81	22.7	4.42	<2	116	0.44	SE
UC2	20190215	Sunny	Calm	Mid-Flood	В	10.3	12:46	11.72	8.25	30.72	22.8	4.5	2	115	0.44	SE
UC2	20190215	Sunny	Calm	Mid-Flood	M	5.7	12:46	11.68	8.45	30.67	22.7	3.82	<2	115	0.35	SE
UC2	20190215	Sunny	Calm	Mid-Flood	M	5.7	12:47	11.69	8.5	30.89	22.7	3.82	2	116	0.37	SE
UC2	20190215	Sunny	Calm	Mid-Flood	S	1	12:47	11.87	8.49	30.92	22.6	3.31	<2	116	0.25	SE
UC2	20190215	Sunny	Calm	Mid-Flood	S	1	12:47	12.01	8.25	30.31	22.6	3.27	<2	115	0.24	SE
I1	20190215	Sunny	Calm	Mid-Flood	В	9	12:53	11.04	8.18	30.37	22.7	4.03	<2	116	0.42	SE
I1	20190215	Sunny	Calm	Mid-Flood	В	9	12:53	11.17	8.03	30.66	22.6	4.08	3	114	0.42	SE
I1	20190215	Sunny	Calm	Mid-Flood	M	5	12:53	11.36	8.28	30.26	22.7	3.83	3	115	0.33	SE
I1	20190215	Sunny	Calm	Mid-Flood	M	5	12:54	11.21	8.48	30.55	22.8	3.79	2	115	0.32	SE
I1	20190215	Sunny	Calm	Mid-Flood	S	1	12:54	11.01	8.46	30.32	22.6	3.23	3	115	0.15	SE
I1	20190215	Sunny	Calm	Mid-Flood	S	1	12:55	11.13	8.35	30.68	22.8	3.22	2	114	0.14	SE
I2	20190215	Sunny	Calm	Mid-Flood	В	10.6	12:56	11.51	8.17	30.69	22.6	4.21	2	115	0.36	SE
I2	20190215	Sunny	Calm	Mid-Flood	В	10.6	12:56	11.66	8.42	30.93	22.7	4.21	3	115	0.36	SE
I2	20190215	Sunny	Calm	Mid-Flood	M	5.8	12:57	11.57	8.05	30.43	22.6	3.62	<2	115	0.25	SE
I2	20190215	Sunny	Calm	Mid-Flood	M	5.8	12:57	11.54	8.23	30.16	22.7	3.57	<2	116	0.23	SE
I2	20190215	Sunny	Calm	Mid-Flood	S	1	12:58	11.52	8.04	30.62	22.7	3.04	2	117	0.25	SE
I2	20190215	Sunny	Calm	Mid-Flood	S	1	12:58	11.34	8.25	30.57	22.6	3.01	<2	115	0.23	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I3	20190215	Sunny	Calm	Mid-Flood	В	9.4	13:00	11.93	8.42	30.4	22.6	4.2	3	115	0.43	SE
I3	20190215	Sunny	Calm	Mid-Flood	В	9.4	13:01	12.03	8.24	30.78	22.8	4.17	2	116	0.45	SE
I3	20190215	Sunny	Calm	Mid-Flood	M	5.2	13:01	11.9	8.29	31	22.7	3.91	2	115	0.32	SE
I3	20190215	Sunny	Calm	Mid-Flood	M	5.2	13:01	11.82	8.38	30.11	22.6	3.92	3	114	0.31	SE
I3	20190215	Sunny	Calm	Mid-Flood	S	1	13:02	11.7	8.02	30.56	22.7	3.35	2	115	0.2	SE
I3	20190215	Sunny	Calm	Mid-Flood	S	1	13:02	11.68	8.38	30.79	22.6	3.26	<2	114	0.19	SE
I4	20190215	Sunny	Calm	Mid-Flood	В	9.8	13:05	11.18	8.18	30.95	22.8	4.05	2	116	0.44	SE
I4	20190215	Sunny	Calm	Mid-Flood	В	9.8	13:05	11.06	8.36	30.36	22.8	4.13	<2	114	0.45	SE
I4	20190215	Sunny	Calm	Mid-Flood	M	5.4	13:05	10.88	8.13	30.66	22.7	3.74	2	115	0.32	SE
I4	20190215	Sunny	Calm	Mid-Flood	M	5.4	13:06	11.01	8.17	30.78	22.8	3.66	<2	115	0.34	SE
I4	20190215	Sunny	Calm	Mid-Flood	S	1	13:06	10.92	8.02	30.05	22.8	3	2	116	0.21	SE
I4	20190215	Sunny	Calm	Mid-Flood	S	1	13:07	11.04	8.21	30.3	22.6	3.08	2	115	0.19	SE
I5	20190215	Sunny	Calm	Mid-Flood	В	11	13:10	11.67	8.1	30.68	22.7	4.05	3	115	0.42	SE
I5	20190215	Sunny	Calm	Mid-Flood	В	11	13:10	11.73	8.4	30.48	22.6	4.02	3	115	0.41	SE
I5	20190215	Sunny	Calm	Mid-Flood	M	6	13:11	11.84	8	30.41	22.6	3.96	2	116	0.31	SE
I5	20190215	Sunny	Calm	Mid-Flood	M	6	13:11	11.7	8.39	30.49	22.8	3.91	3	114	0.3	SE
I5	20190215	Sunny	Calm	Mid-Flood	S	1	13:11	11.6	8.39	30.3	22.6	3.13	2	114	0.2	SE
I5	20190215	Sunny	Calm	Mid-Flood	S	1	13:12	11.54	8.02	30.56	22.8	3.11	4	114	0.2	SE
I6	20190215	Sunny	Calm	Mid-Flood	В	9	13:32	11.72	8.02	30.34	22.8	4.17	<2	113	0.38	SE
I6	20190215	Sunny	Calm	Mid-Flood	В	9	13:33	11.9	8	30.43	22.8	4.22	<2	114	0.39	SE
I6	20190215	Sunny	Calm	Mid-Flood	M	5	13:33	11.85	8.16	30.48	22.8	3.7	3	115	0.32	SE
I6	20190215	Sunny	Calm	Mid-Flood	M	5	13:33	11.72	8.02	30.41	22.7	3.67	<2	113	0.31	SE
I6	20190215	Sunny	Calm	Mid-Flood	S	1	13:34	11.78	8.47	30.66	22.8	3.18	3	116	0.17	SE
I6	20190215	Sunny	Calm	Mid-Flood	S	1	13:34	11.93	8.04	30.71	22.8	3.2	3	116	0.18	SE
I7	20190215	Sunny	Calm	Mid-Flood	В	9.2	13:27	11.71	8.15	30.42	22.8	4	4	114	0.43	SE
I7	20190215	Sunny	Calm	Mid-Flood	В	9.2	13:27	11.75	8.11	30.31	22.6	3.99	3	112	0.43	SE
I7	20190215	Sunny	Calm	Mid-Flood	M	5.1	13:27	11.86	8.04	30.92	22.7	3.76	4	114	0.27	SE
I7	20190215	Sunny	Calm	Mid-Flood	M	5.1	13:28	11.95	8.01	30.99	22.6	3.86	5	114	0.27	SE
I7	20190215	Sunny	Calm	Mid-Flood	S	1	13:28	11.89	8.1	30.39	22.8	3.5	3	115	0.2	SE
I7	20190215	Sunny	Calm	Mid-Flood	S	1	13:28	12.07	8.17	30.1	22.7	3.44	3	113	0.21	SE
18	20190215	Sunny	Calm	Mid-Flood	В	9.7	13:22	11.55	8.33	30.71	22.7	4.16	<2	115	0.35	SE
I8	20190215	Sunny	Calm	Mid-Flood	В	9.7	13:22	11.65	8.39	30.66	22.8	4.26	<2	114	0.36	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
18	20190215	Sunny	Calm	Mid-Flood	M	5.4	13:23	11.52	8.05	30.69	22.6	3.68	2	114	0.32	SE
18	20190215	Sunny	Calm	Mid-Flood	M	5.4	13:23	11.49	8.02	30.09	22.8	3.69	3	113	0.33	SE
I8	20190215	Sunny	Calm	Mid-Flood	S	1	13:23	11.45	8.17	30.29	22.8	3.36	2	112	0.21	SE
I8	20190215	Sunny	Calm	Mid-Flood	S	1	13:24	11.32	8.02	30.53	22.6	3.41	2	112	0.2	SE
I9	20190215	Sunny	Calm	Mid-Flood	В	9.9	13:18	11.61	8.45	30.49	22.8	4.46	<2	115	0.44	SE
I9	20190215	Sunny	Calm	Mid-Flood	В	9.9	13:18	11.65	8.37	30.83	22.6	4.37	2	113	0.42	SE
19	20190215	Sunny	Calm	Mid-Flood	M	5.5	13:19	11.71	8.18	30.42	22.6	3.88	2	115	0.27	SE
I9	20190215	Sunny	Calm	Mid-Flood	M	5.5	13:19	11.77	8.07	30.05	22.8	3.84	3	115	0.25	SE
I9	20190215	Sunny	Calm	Mid-Flood	S	1	13:20	11.8	8.41	30.3	22.7	3.5	4	114	0.18	SE
I9	20190215	Sunny	Calm	Mid-Flood	S	1	13:20	11.95	8.38	30.83	22.7	3.52	4	116	0.16	SE
I10	20190215	Sunny	Calm	Mid-Flood	В	10.6	13:14	11.99	8.12	30.93	22.8	4.48	3	114	0.42	SE
I10	20190215	Sunny	Calm	Mid-Flood	В	10.6	13:15	12.17	8.29	30.5	22.8	4.56	3	114	0.4	SE
I10	20190215	Sunny	Calm	Mid-Flood	M	5.8	13:15	12.16	8.15	30.35	22.8	3.6	5	113	0.26	SE
I10	20190215	Sunny	Calm	Mid-Flood	M	5.8	13:16	12.02	8.03	30.87	22.7	3.7	4	114	0.27	SE
I10	20190215	Sunny	Calm	Mid-Flood	S	1	13:16	12.22	8.25	30.52	22.7	3.12	4	115	0.24	SE
I10	20190215	Sunny	Calm	Mid-Flood	S	1	13:16	12.12	8.22	30.44	22.7	3.02	5	115	0.24	SE
UC1	20190216	Sunny	Calm	Mid-Ebb	В	9.5	9:17	9.66	8.43	30.44	23.5	3.72	<2	114	0.44	SE
UC1	20190216	Sunny	Calm	Mid-Ebb	В	9.5	9:17	9.74	8.4	30.11	23.5	3.78	<2	114	0.43	SE
UC1	20190216	Sunny	Calm	Mid-Ebb	M	5.3	9:18	9.89	8.44	30.46	23.7	3.19	<2	113	0.31	SE
UC1	20190216	Sunny	Calm	Mid-Ebb	M	5.3	9:18	10.09	8.06	30.07	23.5	3.29	<2	113	0.32	SE
UC1	20190216	Sunny	Calm	Mid-Ebb	S	1	9:19	9.94	8.29	30.17	23.5	2.57	<2	114	0.21	SE
UC1	20190216	Sunny	Calm	Mid-Ebb	S	1	9:19	9.82	8.28	30.12	23.6	2.62	<2	114	0.19	SE
UC2	20190216	Sunny	Calm	Mid-Ebb	В	9.6	9:25	9.6	8.23	30.76	23.5	3.63	<2	114	0.41	SE
UC2	20190216	Sunny	Calm	Mid-Ebb	В	9.6	9:25	9.76	8.28	30.95	23.6	3.62	<2	112	0.41	SE
UC2	20190216	Sunny	Calm	Mid-Ebb	M	5.3	9:26	9.92	8.19	30.72	23.6	3.12	<2	113	0.3	SE
UC2	20190216	Sunny	Calm	Mid-Ebb	M	5.3	9:26	10.05	8.28	30.8	23.5	3.16	<2	113	0.32	SE
UC2	20190216	Sunny	Calm	Mid-Ebb	S	1	9:27	9.95	8.3	30.87	23.6	2.52	<2	114	0.27	SE
UC2	20190216	Sunny	Calm	Mid-Ebb	S	1	9:27	10.05	8.45	30.54	23.7	2.51	<2	114	0.25	SE
I1	20190216	Sunny	Calm	Mid-Ebb	В	10.7	10:08	9.55	8.26	30.54	23.5	3.93	<2	114	0.49	SE
I1	20190216	Sunny	Calm	Mid-Ebb	В	10.7	10:08	9.62	8	30.04	23.6	3.92	<2	113	0.47	SE
I1	20190216	Sunny	Calm	Mid-Ebb	M	5.9	10:09	9.53	8.25	30.08	23.6	3.14	<2	114	0.37	SE
I1	20190216	Sunny	Calm	Mid-Ebb	M	5.9	10:09	9.73	8.09	30.8	23.6	3.04	2	112	0.36	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190216	Sunny	Calm	Mid-Ebb	S	1	10:10	9.55	8.31	30.88	23.5	2.54	<2	114	0.23	SE
I1	20190216	Sunny	Calm	Mid-Ebb	S	1	10:10	9.63	8.26	30.07	23.6	2.59	<2	113	0.24	SE
I2	20190216	Sunny	Calm	Mid-Ebb	В	10.9	10:01	10.18	8	30.9	23.5	3.85	<2	113	0.45	SE
I2	20190216	Sunny	Calm	Mid-Ebb	В	10.9	10:01	10.24	8.11	30.03	23.6	3.91	<2	113	0.43	SE
I2	20190216	Sunny	Calm	Mid-Ebb	M	6	10:02	10.08	8.36	30.14	23.7	3.5	3	113	0.34	SE
I2	20190216	Sunny	Calm	Mid-Ebb	M	6	10:02	10.14	8.07	30.57	23.6	3.42	2	112	0.32	SE
I2	20190216	Sunny	Calm	Mid-Ebb	S	1	10:03	10.01	8.17	30.48	23.5	3	<2	112	0.22	SE
I2	20190216	Sunny	Calm	Mid-Ebb	S	1	10:03	10.19	8.27	30.67	23.6	3.07	<2	113	0.24	SE
I3	20190216	Sunny	Calm	Mid-Ebb	В	9.8	9:52	10.11	8.35	30.23	23.6	3.95	<2	114	0.5	SE
I3	20190216	Sunny	Calm	Mid-Ebb	В	9.8	9:52	10.25	8.03	30.92	23.6	3.89	<2	113	0.48	SE
I3	20190216	Sunny	Calm	Mid-Ebb	M	5.4	9:53	10.14	8.3	30.84	23.7	3.4	<2	114	0.37	SE
I3	20190216	Sunny	Calm	Mid-Ebb	M	5.4	9:53	10.05	8.17	30.15	23.7	3.41	<2	113	0.37	SE
I3	20190216	Sunny	Calm	Mid-Ebb	S	1	9:54	9.88	8.1	30.52	23.7	2.55	3	114	0.26	SE
I3	20190216	Sunny	Calm	Mid-Ebb	S	1	9:54	9.95	8.09	30.17	23.5	2.62	2	113	0.25	SE
I4	20190216	Sunny	Calm	Mid-Ebb	В	9.9	9:45	10.37	8	30.41	23.6	3.64	<2	113	0.49	SE
I4	20190216	Sunny	Calm	Mid-Ebb	В	9.9	9:46	10.23	8.27	30.52	23.7	3.66	<2	113	0.49	SE
I4	20190216	Sunny	Calm	Mid-Ebb	M	5.5	9:46	10.11	8.31	30.82	23.7	3.34	<2	113	0.33	SE
I4	20190216	Sunny	Calm	Mid-Ebb	M	5.5	9:47	10.15	8.24	30.67	23.6	3.29	<2	113	0.35	SE
I4	20190216	Sunny	Calm	Mid-Ebb	S	1	9:47	10.19	8.47	30.25	23.5	2.73	<2	113	0.25	SE
I4	20190216	Sunny	Calm	Mid-Ebb	S	1	9:48	10.16	8.18	30.47	23.6	2.67	<2	113	0.24	SE
I5	20190216	Sunny	Calm	Mid-Ebb	В	10.8	9:38	9.74	8.04	30.3	23.5	3.7	<2	113	0.43	SE
I5	20190216	Sunny	Calm	Mid-Ebb	В	10.8	9:39	9.73	8.26	30.07	23.5	3.67	<2	113	0.44	SE
I5	20190216	Sunny	Calm	Mid-Ebb	M	5.9	9:39	9.84	8.02	30.38	23.7	3.27	<2	113	0.33	SE
I5	20190216	Sunny	Calm	Mid-Ebb	M	5.9	9:40	9.99	8.26	30.33	23.6	3.32	<2	113	0.33	SE
I5	20190216	Sunny	Calm	Mid-Ebb	S	1	9:40	9.9	8.49	30.7	23.7	2.98	<2	114	0.22	SE
I5	20190216	Sunny	Calm	Mid-Ebb	S	1	9:41	10.08	8.33	30.07	23.7	2.95	<2	113	0.2	SE
I6	20190216	Sunny	Calm	Mid-Ebb	В	10.2	10:15	10.36	8.21	30.58	23.5	3.63	<2	113	0.45	SE
I6	20190216	Sunny	Calm	Mid-Ebb	В	10.2	10:16	10.56	8.39	30.2	23.6	3.57	<2	114	0.45	SE
I6	20190216	Sunny	Calm	Mid-Ebb	M	5.6	10:16	10.76	8.43	30.58	23.6	3.29	<2	114	0.35	SE
I6	20190216	Sunny	Calm	Mid-Ebb	M	5.6	10:17	10.77	8.49	30.12	23.6	3.31	2	113	0.36	SE
I6	20190216	Sunny	Calm	Mid-Ebb	S	1	10:17	10.7	8.06	30.91	23.5	2.65	<2	114	0.26	SE
I6	20190216	Sunny	Calm	Mid-Ebb	S	1	10:18	10.67	8.08	30.44	23.5	2.63	<2	113	0.25	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I7	20190216	Sunny	Calm	Mid-Ebb	В	10.8	10:24	10.46	8.28	30.53	23.6	3.55	<2	113	0.44	SE
I7	20190216	Sunny	Calm	Mid-Ebb	В	10.8	10:25	10.65	8.15	30.3	23.5	3.6	<2	112	0.45	SE
I7	20190216	Sunny	Calm	Mid-Ebb	M	5.9	10:25	10.8	8.5	30.87	23.7	3.38	<2	112	0.39	SE
I7	20190216	Sunny	Calm	Mid-Ebb	M	5.9	10:26	10.87	8.02	30.31	23.7	3.41	<2	113	0.38	SE
I7	20190216	Sunny	Calm	Mid-Ebb	S	1	10:26	11.04	8.01	30.04	23.7	2.71	<2	115	0.28	SE
I7	20190216	Sunny	Calm	Mid-Ebb	S	1	10:27	10.9	8.11	31	23.5	2.66	<2	114	0.26	SE
18	20190216	Sunny	Calm	Mid-Ebb	В	10	10:32	9.78	8.42	30.13	23.6	3.93	<2	113	0.45	SE
18	20190216	Sunny	Calm	Mid-Ebb	В	10	10:33	9.7	8.5	30.46	23.5	3.85	<2	114	0.43	SE
18	20190216	Sunny	Calm	Mid-Ebb	M	5.5	10:33	9.84	8.49	30.17	23.6	3.35	<2	113	0.35	SE
18	20190216	Sunny	Calm	Mid-Ebb	M	5.5	10:34	9.98	8.26	30.61	23.7	3.35	<2	114	0.36	SE
18	20190216	Sunny	Calm	Mid-Ebb	S	1	10:34	10.17	8.18	30.87	23.7	2.68	<2	114	0.27	SE
18	20190216	Sunny	Calm	Mid-Ebb	S	1	10:35	10	8.12	30.18	23.6	2.71	<2	113	0.27	SE
I9	20190216	Sunny	Calm	Mid-Ebb	В	10.6	10:39	9.99	8.46	30.02	23.7	3.97	<2	113	0.49	SE
I9	20190216	Sunny	Calm	Mid-Ebb	В	10.6	10:39	9.83	8.39	30.44	23.7	3.88	<2	113	0.51	SE
I9	20190216	Sunny	Calm	Mid-Ebb	M	5.8	10:40	9.91	8.19	30.55	23.5	3.04	<2	113	0.32	SE
I9	20190216	Sunny	Calm	Mid-Ebb	M	5.8	10:40	9.95	8.28	30.95	23.7	3.12	<2	112	0.31	SE
I9	20190216	Sunny	Calm	Mid-Ebb	S	1	10:41	9.78	8.15	30.33	23.7	2.58	<2	114	0.21	SE
I9	20190216	Sunny	Calm	Mid-Ebb	S	1	10:41	9.86	8.03	30.58	23.7	2.59	<2	113	0.19	SE
I10	20190216	Sunny	Calm	Mid-Ebb	В	9.3	10:45	10.27	8.25	30.64	23.5	3.84	<2	114	0.43	SE
I10	20190216	Sunny	Calm	Mid-Ebb	В	9.3	10:45	10.11	8.08	30.55	23.6	3.94	<2	114	0.41	SE
I10	20190216	Sunny	Calm	Mid-Ebb	M	5.2	10:46	10.09	8.38	30.82	23.7	3.1	<2	114	0.34	SE
I10	20190216	Sunny	Calm	Mid-Ebb	M	5.2	10:46	9.89	8.39	30.12	23.6	3.16	<2	113	0.35	SE
I10	20190216	Sunny	Calm	Mid-Ebb	S	1	10:47	9.95	8.25	30.07	23.7	2.56	<2	114	0.23	SE
I10	20190216	Sunny	Calm	Mid-Ebb	S	1	10:47	9.81	8.1	30.33	23.6	2.48	<2	114	0.25	SE
UC1	20190216	Sunny	Light	Mid-Flood	В	9.2	13:01	9.67	8.43	30	23.5	3.53	3	114	0.49	NW
UC1	20190216	Sunny	Light	Mid-Flood	В	9.2	13:01	9.66	8.43	30.9	23.5	3.46	3	113	0.5	NW
UC1	20190216	Sunny	Light	Mid-Flood	M	5.1	13:02	9.57	8.42	30.46	23.7	3.15	4	113	0.33	NW
UC1	20190216	Sunny	Light	Mid-Flood	M	5.1	13:02	9.55	8.39	30.77	23.6	3.09	3	113	0.31	NW
UC1	20190216	Sunny	Light	Mid-Flood	S	1	13:03	9.74	8.09	30.56	23.6	2.88	3	112	0.2	NW
UC1	20190216	Sunny	Light	Mid-Flood	S	1	13:03	9.54	8.13	30.8	23.7	2.97	3	112	0.18	NW
UC2	20190216	Sunny	Light	Mid-Flood	В	11	13:08	9.74	8.49	30.52	23.7	3.83	4	112	0.45	NW
UC2	20190216	Sunny	Light	Mid-Flood	В	11	13:08	9.61	8.18	30.06	23.6	3.8	5	113	0.45	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190216	Sunny	Light	Mid-Flood	M	6	13:09	9.45	8.41	30.01	23.6	3.47	5	113	0.37	NW
UC2	20190216	Sunny	Light	Mid-Flood	M	6	13:09	9.34	8.47	30.01	23.7	3.43	6	112	0.39	NW
UC2	20190216	Sunny	Light	Mid-Flood	S	1	13:10	9.42	8.41	30.63	23.5	2.73	3	114	0.25	NW
UC2	20190216	Sunny	Light	Mid-Flood	S	1	13:10	9.44	8.46	30.14	23.6	2.76	4	113	0.26	NW
I1	20190216	Sunny	Light	Mid-Flood	В	10	13:18	10.29	8.11	30.05	23.7	3.78	5	113	0.46	NW
I1	20190216	Sunny	Light	Mid-Flood	В	10	13:18	10.25	8.25	30.51	23.7	3.72	5	113	0.47	NW
I1	20190216	Sunny	Light	Mid-Flood	M	5.5	13:19	10.37	8.46	30.36	23.7	3.18	5	112	0.4	NW
I1	20190216	Sunny	Light	Mid-Flood	M	5.5	13:19	10.31	8.2	30.28	23.6	3.14	4	112	0.39	NW
I1	20190216	Sunny	Light	Mid-Flood	S	1	13:20	10.18	8.08	30.55	23.6	2.72	3	112	0.21	NW
I1	20190216	Sunny	Light	Mid-Flood	S	1	13:20	10.1	8.35	30.69	23.6	2.72	3	112	0.21	NW
I2	20190216	Sunny	Light	Mid-Flood	В	10.1	13:25	10.25	8.34	30.89	23.6	3.95	3	112	0.47	NW
I2	20190216	Sunny	Light	Mid-Flood	В	10.1	13:26	10.28	8.19	30.45	23.6	3.86	3	114	0.48	NW
I2	20190216	Sunny	Light	Mid-Flood	M	5.6	13:26	10.21	8.5	30.25	23.7	3.45	7	113	0.4	NW
I2	20190216	Sunny	Light	Mid-Flood	M	5.6	13:27	10.05	8.46	30.22	23.6	3.49	6	113	0.42	NW
I2	20190216	Sunny	Light	Mid-Flood	S	1	13:27	10.15	8.35	30.07	23.7	2.91	5	113	0.22	NW
I2	20190216	Sunny	Light	Mid-Flood	S	1	13:28	10.23	8.17	30.19	23.6	2.86	5	113	0.22	NW
I3	20190216	Sunny	Light	Mid-Flood	В	11	13:32	10.27	8.33	30.59	23.6	3.98	<2	113	0.42	NW
13	20190216	Sunny	Light	Mid-Flood	В	11	13:33	10.4	8.13	30.66	23.7	4.05	<2	114	0.43	NW
13	20190216	Sunny	Light	Mid-Flood	M	6	13:33	10.59	8.33	31	23.6	3.01	<2	113	0.4	NW
I3	20190216	Sunny	Light	Mid-Flood	M	6	13:34	10.77	8.28	30.61	23.6	3.03	2	112	0.42	NW
I3	20190216	Sunny	Light	Mid-Flood	S	1	13:34	10.84	8.27	30.78	23.6	2.9	3	114	0.24	NW
13	20190216	Sunny	Light	Mid-Flood	S	1	13:35	10.7	8.04	30.49	23.6	2.85	2	114	0.25	NW
I4	20190216	Sunny	Light	Mid-Flood	В	10	13:39	10.06	8.23	30.49	23.6	3.66	<2	113	0.48	NW
I4	20190216	Sunny	Light	Mid-Flood	В	10	13:40	10.19	8.15	30.83	23.7	3.66	2	113	0.5	NW
I 4	20190216	Sunny	Light	Mid-Flood	M	5.5	13:40	10.15	8.31	30.78	23.5	3.05	<2	114	0.34	NW
I 4	20190216	Sunny	Light	Mid-Flood	M	5.5	13:41	10.09	8.11	30.36	23.5	3.06	<2	113	0.35	NW
I 4	20190216	Sunny	Light	Mid-Flood	S	1	13:41	10.06	8.15	30.74	23.5	2.71	<2	114	0.3	NW
I4	20190216	Sunny	Light	Mid-Flood	S	1	13:42	10.11	8.28	30.41	23.5	2.61	<2	113	0.29	NW
I5	20190216	Sunny	Light	Mid-Flood	В	11	13:46	10.28	8.33	30.8	23.6	3.73	<2	114	0.4	NW
I5	20190216	Sunny	Light	Mid-Flood	В	11	13:47	10.13	8.1	30.79	23.5	3.83	<2	113	0.4	NW
I5	20190216	Sunny	Light	Mid-Flood	M	6	13:47	9.95	8.2	30.93	23.7	3.41	<2	112	0.35	NW
I5	20190216	Sunny	Light	Mid-Flood	M	6	13:48	10.08	8.35	30.68	23.7	3.51	<2	113	0.33	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190216	Sunny	Light	Mid-Flood	S	1	13:48	10.13	8.28	30.51	23.5	2.86	<2	112	0.27	NW
I5	20190216	Sunny	Light	Mid-Flood	S	1	13:49	10.11	8.28	30.75	23.5	2.78	<2	113	0.26	NW
I6	20190216	Sunny	Light	Mid-Flood	В	9	13:38	10.49	8.09	30.5	23.7	3.61	4	113	0.45	NW
I6	20190216	Sunny	Light	Mid-Flood	В	9	13:39	10.39	8.23	30.51	23.6	3.69	4	112	0.46	NW
I6	20190216	Sunny	Light	Mid-Flood	M	5	13:39	10.28	8.25	30.12	23.7	3.32	4	113	0.32	NW
I6	20190216	Sunny	Light	Mid-Flood	M	5	13:40	10.2	8.17	30.44	23.7	3.27	4	112	0.3	NW
I6	20190216	Sunny	Light	Mid-Flood	S	1	13:40	10.11	8.33	30.21	23.5	2.55	5	113	0.24	NW
I6	20190216	Sunny	Light	Mid-Flood	S	1	13:41	10.04	8.08	30.19	23.7	2.55	5	113	0.23	NW
I7	20190216	Sunny	Light	Mid-Flood	В	10.4	13:13	9.69	8.06	30.51	23.7	3.5	4	113	0.49	NW
I7	20190216	Sunny	Light	Mid-Flood	В	10.4	13:13	9.53	8.43	30.4	23.6	3.57	5	113	0.51	NW
I7	20190216	Sunny	Light	Mid-Flood	M	5.7	13:14	9.52	8.28	30.99	23.6	3.44	3	114	0.32	NW
I7	20190216	Sunny	Light	Mid-Flood	M	5.7	13:14	9.56	8.13	30.59	23.7	3.44	4	114	0.3	NW
I7	20190216	Sunny	Light	Mid-Flood	S	1	13:15	9.43	8.45	30.89	23.5	2.91	4	113	0.28	NW
I7	20190216	Sunny	Light	Mid-Flood	S	1	13:15	9.44	8.39	30.41	23.5	2.88	4	113	0.3	NW
18	20190216	Sunny	Light	Mid-Flood	В	10.7	14:07	9.69	8.31	30.86	23.5	3.82	3	113	0.47	NW
18	20190216	Sunny	Light	Mid-Flood	В	10.7	14:07	9.74	8.41	30.17	23.7	3.89	3	114	0.46	NW
18	20190216	Sunny	Light	Mid-Flood	M	5.9	14:08	9.66	8.35	30.53	23.7	3.28	3	115	0.31	NW
18	20190216	Sunny	Light	Mid-Flood	M	5.9	14:08	9.86	8.05	30.78	23.5	3.3	3	114	0.32	NW
18	20190216	Sunny	Light	Mid-Flood	S	1	14:09	10.01	8.28	30.92	23.6	2.84	3	113	0.27	NW
18	20190216	Sunny	Light	Mid-Flood	S	1	14:09	9.92	8.34	30.78	23.7	2.83	3	114	0.27	NW
I9	20190216	Sunny	Light	Mid-Flood	В	10.3	14:00	9.85	8.17	30.8	23.5	3.51	6	114	0.42	NW
I9	20190216	Sunny	Light	Mid-Flood	В	10.3	14:00	9.93	8.27	30.78	23.5	3.45	4	113	0.4	NW
I9	20190216	Sunny	Light	Mid-Flood	M	5.7	14:01	9.78	8.1	30.48	23.6	3.32	5	114	0.32	NW
19	20190216	Sunny	Light	Mid-Flood	M	5.7	14:01	9.72	8.02	30.89	23.7	3.38	4	114	0.32	NW
I9	20190216	Sunny	Light	Mid-Flood	S	1	14:02	9.68	8.42	31	23.6	2.55	2	115	0.29	NW
I9	20190216	Sunny	Light	Mid-Flood	S	1	14:02	9.87	8.32	30.25	23.6	2.54	<2	115	0.31	NW
I10	20190216	Sunny	Light	Mid-Flood	В	10.3	13:53	10.47	8.28	30.71	23.7	3.64	<2	114	0.42	NW
I10	20190216	Sunny	Light	Mid-Flood	В	10.3	13:53	10.29	8.34	30.82	23.6	3.58	2	114	0.42	NW
I10	20190216	Sunny	Light	Mid-Flood	M	5.7	13:54	10.14	8.02	30.97	23.5	3.06	<2	114	0.34	NW
I10	20190216	Sunny	Light	Mid-Flood	M	5.7	13:54	9.96	8.11	30.4	23.6	3.01	<2	114	0.36	NW
I10	20190216	Sunny	Light	Mid-Flood	S	1	13:55	10.01	8.44	30.86	23.6	2.84	<2	115	0.26	NW
I10	20190216	Sunny	Light	Mid-Flood	S	1	13:55	9.94	8.04	30.83	23.5	2.91	<2	114	0.25	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190217	Cloudy	Moderate	Mid-Ebb	В	9.7	10:38	9.99	8.12	30.4	22.7	3.5	3	113	0.49	SE
UC1	20190217	Cloudy	Moderate	Mid-Ebb	В	9.7	10:38	9.98	8.11	30.94	22.7	3.52	2	112	0.51	SE
UC1	20190217	Cloudy	Moderate	Mid-Ebb	M	5.4	10:39	10.14	8.13	30.02	22.6	3.28	3	112	0.35	SE
UC1	20190217	Cloudy	Moderate	Mid-Ebb	M	5.4	10:39	10	8.22	30.33	22.6	3.22	2	112	0.34	SE
UC1	20190217	Cloudy	Moderate	Mid-Ebb	S	1	10:40	9.87	8.42	30	22.6	2.65	3	112	0.31	SE
UC1	20190217	Cloudy	Moderate	Mid-Ebb	S	1	10:40	9.68	8.26	30.3	22.7	2.59	3	113	0.3	SE
UC2	20190217	Cloudy	Moderate	Mid-Ebb	В	9.5	10:43	9.93	8.09	30.17	22.8	3.65	3	113	0.45	SE
UC2	20190217	Cloudy	Moderate	Mid-Ebb	В	9.5	10:43	9.95	8.31	30.05	22.6	3.73	4	113	0.46	SE
UC2	20190217	Cloudy	Moderate	Mid-Ebb	M	5.3	10:44	9.94	8.5	30.25	22.7	3.47	2	113	0.42	SE
UC2	20190217	Cloudy	Moderate	Mid-Ebb	M	5.3	10:44	10	8.14	30.85	22.8	3.51	2	114	0.43	SE
UC2	20190217	Cloudy	Moderate	Mid-Ebb	S	1	10:45	9.86	8.44	30.68	22.7	2.79	2	112	0.25	SE
UC2	20190217	Cloudy	Moderate	Mid-Ebb	S	1	10:45	9.76	8.03	30.31	22.6	2.81	2	114	0.27	SE
I1	20190217	Cloudy	Moderate	Mid-Ebb	В	10.6	10:53	10.41	8.08	30.52	22.8	3.51	2	113	0.47	SE
I1	20190217	Cloudy	Moderate	Mid-Ebb	В	10.6	10:53	10.48	8.37	30.9	22.7	3.54	2	112	0.48	SE
I1	20190217	Cloudy	Moderate	Mid-Ebb	M	5.8	10:54	10.68	8.21	30.39	22.6	3.12	<2	113	0.45	SE
I1	20190217	Cloudy	Moderate	Mid-Ebb	M	5.8	10:54	10.68	8.05	30.9	22.6	3.19	3	113	0.47	SE
I1	20190217	Cloudy	Moderate	Mid-Ebb	S	1	10:55	10.53	8.06	30.25	22.6	2.95	3	112	0.29	SE
I1	20190217	Cloudy	Moderate	Mid-Ebb	S	1	10:55	10.73	8.29	30.9	22.7	3	2	113	0.31	SE
I2	20190217	Cloudy	Moderate	Mid-Ebb	В	9.2	11:00	10.42	8.03	30.42	22.8	3.99	<2	112	0.51	SE
I2	20190217	Cloudy	Moderate	Mid-Ebb	В	9.2	11:00	10.33	8.37	30.08	22.6	3.9	<2	112	0.53	SE
I2	20190217	Cloudy	Moderate	Mid-Ebb	M	5.1	11:01	10.28	8.33	30.89	22.6	3.05	3	111	0.41	SE
I2	20190217	Cloudy	Moderate	Mid-Ebb	M	5.1	11:01	10.32	8.06	30.34	22.6	3	<2	112	0.41	SE
I2	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:02	10.26	8.04	30.95	22.8	2.9	<2	111	0.25	SE
I2	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:02	10.4	8.14	30.16	22.7	2.89	2	113	0.23	SE
I3	20190217	Cloudy	Moderate	Mid-Ebb	В	9.4	11:05	9.63	8.14	30.72	22.6	3.67	5	113	0.49	SE
I3	20190217	Cloudy	Moderate	Mid-Ebb	В	9.4	11:05	9.8	8.3	30.82	22.8	3.72	4	112	0.49	SE
13	20190217	Cloudy	Moderate	Mid-Ebb	M	5.2	11:06	9.77	8.01	30.4	22.8	3.1	2	112	0.45	SE
13	20190217	Cloudy	Moderate	Mid-Ebb	M	5.2	11:06	9.61	8.36	30.85	22.8	3.14	<2	112	0.46	SE
13	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:07	9.8	8.48	30.95	22.7	2.5	3	112	0.26	SE
13	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:07	9.85	8.37	30.83	22.6	2.52	2	112	0.26	SE
I4	20190217	Cloudy	Moderate	Mid-Ebb	В	9.8	11:11	9.51	8.25	30.02	22.7	3.84	2	113	0.55	SE
I4	20190217	Cloudy	Moderate	Mid-Ebb	В	9.8	11:12	9.68	8.28	30.15	22.7	3.79	2	112	0.54	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I4	20190217	Cloudy	Moderate	Mid-Ebb	M	5.4	11:12	9.65	8.44	30.77	22.7	3.39	<2	112	0.42	SE
I4	20190217	Cloudy	Moderate	Mid-Ebb	M	5.4	11:13	9.45	8.24	30.33	22.8	3.43	<2	113	0.44	SE
I4	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:13	9.56	8.39	30.41	22.7	2.96	<2	112	0.32	SE
I4	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:14	9.7	8.4	30.9	22.8	2.99	<2	112	0.3	SE
I5	20190217	Cloudy	Moderate	Mid-Ebb	В	9.1	11:17	9.68	8.38	30.12	22.6	3.82	2	113	0.46	SE
I5	20190217	Cloudy	Moderate	Mid-Ebb	В	9.1	11:18	9.57	8.1	30.46	22.8	3.89	<2	113	0.47	SE
I5	20190217	Cloudy	Moderate	Mid-Ebb	M	5.1	11:18	9.55	8.41	30.83	22.7	3.32	<2	112	0.36	SE
I5	20190217	Cloudy	Moderate	Mid-Ebb	M	5.1	11:19	9.61	8.17	30.48	22.6	3.38	<2	112	0.34	SE
I5	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:19	9.7	8.1	30.04	22.8	2.91	<2	112	0.27	SE
I5	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:20	9.68	8.26	30.95	22.6	3	3	112	0.29	SE
I6	20190217	Cloudy	Moderate	Mid-Ebb	В	10.8	11:48	10.49	8.5	30.38	22.8	3.53	<2	113	0.49	SE
I6	20190217	Cloudy	Moderate	Mid-Ebb	В	10.8	11:49	10.59	8.18	30.41	22.7	3.62	<2	114	0.48	SE
I6	20190217	Cloudy	Moderate	Mid-Ebb	M	5.9	11:49	10.72	8.12	30.42	22.7	3.45	2	113	0.44	SE
I6	20190217	Cloudy	Moderate	Mid-Ebb	M	5.9	11:50	10.77	8.33	30.22	22.7	3.44	<2	113	0.44	SE
I6	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:50	10.76	8.03	30.95	22.6	2.86	<2	114	0.27	SE
I6	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:51	10.92	8.05	30.53	22.7	2.9	<2	112	0.27	SE
I7	20190217	Cloudy	Moderate	Mid-Ebb	В	9.6	11:41	10.21	8.41	30.88	22.7	3.51	2	114	0.54	SE
I7	20190217	Cloudy	Moderate	Mid-Ebb	В	9.6	11:42	10.11	8.41	30.45	22.6	3.42	3	113	0.55	SE
I7	20190217	Cloudy	Moderate	Mid-Ebb	M	5.3	11:42	10.17	8.19	30.32	22.8	3.21	<2	113	0.45	SE
I7	20190217	Cloudy	Moderate	Mid-Ebb	M	5.3	11:43	10.04	8.15	30.36	22.6	3.18	3	113	0.47	SE
I7	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:43	10.24	8.13	30.08	22.8	2.86	<2	112	0.35	SE
I7	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:44	10.37	8.41	30.95	22.8	2.95	3	113	0.33	SE
I8	20190217	Cloudy	Moderate	Mid-Ebb	В	9.7	11:35	9.8	8.08	30.7	22.7	3.93	3	112	0.47	SE
I8	20190217	Cloudy	Moderate	Mid-Ebb	В	9.7	11:36	9.77	8.03	30.99	22.7	3.97	3	113	0.48	SE
I8	20190217	Cloudy	Moderate	Mid-Ebb	M	5.4	11:36	9.69	8.25	30.44	22.6	3.29	<2	113	0.36	SE
I8	20190217	Cloudy	Moderate	Mid-Ebb	M	5.4	11:37	9.66	8.09	30.12	22.6	3.29	<2	113	0.35	SE
I8	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:37	9.66	8.4	30.67	22.7	2.57	<2	113	0.27	SE
I8	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:38	9.79	8.33	30.89	22.6	2.66	<2	112	0.29	SE
I9	20190217	Cloudy	Moderate	Mid-Ebb	В	9	11:29	9.76	8.08	30.67	22.8	3.9	3	113	0.5	SE
I9	20190217	Cloudy	Moderate	Mid-Ebb	В	9	11:29	9.65	8.17	30.94	22.8	3.9	2	112	0.49	SE
I9	20190217	Cloudy	Moderate	Mid-Ebb	M	5	11:30	9.54	8.41	30.17	22.7	3.5	2	112	0.43	SE
I9	20190217	Cloudy	Moderate	Mid-Ebb	M	5	11:30	9.7	8.17	30.44	22.7	3.5	2	113	0.43	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I9	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:31	9.66	8.34	30.17	22.8	2.87	<2	113	0.29	SE
I9	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:31	9.73	8.48	30.03	22.7	2.77	<2	114	0.3	SE
I10	20190217	Cloudy	Moderate	Mid-Ebb	В	9.6	11:22	10.43	8.12	30.82	22.8	3.56	<2	113	0.47	SE
I10	20190217	Cloudy	Moderate	Mid-Ebb	В	9.6	11:22	10.4	8.13	30.06	22.7	3.53	<2	113	0.48	SE
I10	20190217	Cloudy	Moderate	Mid-Ebb	M	5.3	11:23	10.41	8.04	30.82	22.8	3.13	2	113	0.44	SE
I10	20190217	Cloudy	Moderate	Mid-Ebb	M	5.3	11:23	10.49	8.48	30.31	22.6	3.03	<2	113	0.43	SE
I10	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:24	10.49	8.1	30.8	22.6	2.79	<2	113	0.34	SE
I10	20190217	Cloudy	Moderate	Mid-Ebb	S	1	11:24	10.45	8.45	30.18	22.6	2.78	<2	113	0.32	SE
UC1	20190217	Fine	Moderate	Mid-Flood	В	10.2	14:12	9.97	8.07	30.28	22.6	3.76	<2	113	0.55	NW
UC1	20190217	Fine	Moderate	Mid-Flood	В	10.2	14:12	10.17	8.27	30.35	22.8	3.71	2	112	0.53	NW
UC1	20190217	Fine	Moderate	Mid-Flood	M	5.6	14:13	10.01	8.33	30.13	22.7	3.46	<2	113	0.38	NW
UC1	20190217	Fine	Moderate	Mid-Flood	M	5.6	14:13	9.99	8.45	30.46	22.8	3.52	<2	113	0.39	NW
UC1	20190217	Fine	Moderate	Mid-Flood	S	1	14:14	10.13	8.14	30.84	22.8	2.6	2	112	0.3	NW
UC1	20190217	Fine	Moderate	Mid-Flood	S	1	14:14	9.95	8.37	30.54	22.6	2.56	<2	112	0.28	NW
UC2	20190217	Fine	Moderate	Mid-Flood	В	9.5	14:19	9.59	8.23	30.01	22.7	3.65	<2	112	0.46	NW
UC2	20190217	Fine	Moderate	Mid-Flood	В	9.5	14:19	9.76	8.23	31	22.7	3.73	<2	112	0.45	NW
UC2	20190217	Fine	Moderate	Mid-Flood	M	5.3	14:20	9.92	8.02	30.57	22.6	3.33	<2	113	0.35	NW
UC2	20190217	Fine	Moderate	Mid-Flood	M	5.3	14:20	9.93	8.08	30.04	22.6	3.39	<2	114	0.37	NW
UC2	20190217	Fine	Moderate	Mid-Flood	S	1	14:21	10.07	8.47	30.48	22.8	2.74	<2	113	0.31	NW
UC2	20190217	Fine	Moderate	Mid-Flood	S	1	14:21	10.08	8.03	30.06	22.7	2.82	2	114	0.32	NW
I1	20190217	Fine	Moderate	Mid-Flood	В	10.3	14:24	9.89	8.36	30.22	22.6	4	<2	112	0.47	NW
I1	20190217	Fine	Moderate	Mid-Flood	В	10.3	14:24	10.04	8.1	30.76	22.7	3.97	<2	114	0.49	NW
I1	20190217	Fine	Moderate	Mid-Flood	M	5.7	14:25	9.9	8.07	30.77	22.6	3.47	<2	113	0.4	NW
I1	20190217	Fine	Moderate	Mid-Flood	M	5.7	14:25	9.98	8.38	30.3	22.6	3.39	<2	112	0.41	NW
I1	20190217	Fine	Moderate	Mid-Flood	S	1	14:26	10.04	8.27	30.8	22.8	2.52	<2	112	0.34	NW
I1	20190217	Fine	Moderate	Mid-Flood	S	1	14:26	10.11	8.03	30.58	22.8	2.61	<2	113	0.34	NW
I2	20190217	Fine	Moderate	Mid-Flood	В	9.7	14:30	9.52	8.32	30.76	22.7	3.99	<2	113	0.53	NW
I2	20190217	Fine	Moderate	Mid-Flood	В	9.7	14:31	9.51	8.13	30.06	22.6	3.89	2	112	0.51	NW
I2	20190217	Fine	Moderate	Mid-Flood	M	5.4	14:31	9.32	8.04	30.97	22.7	3.01	<2	112	0.39	NW
I2	20190217	Fine	Moderate	Mid-Flood	M	5.4	14:32	9.37	8.16	30.35	22.6	3.01	<2	113	0.38	NW
I2	20190217	Fine	Moderate	Mid-Flood	S	1	14:32	9.31	8.07	30.76	22.7	2.57	<2	113	0.28	NW
I2	20190217	Fine	Moderate	Mid-Flood	S	1	14:33	9.25	8.19	30.43	22.7	2.5	<2	114	0.29	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I3	20190217	Fine	Moderate	Mid-Flood	В	10.1	14:36	10.32	8.07	30.35	22.7	3.52	5	112	0.48	NW
I3	20190217	Fine	Moderate	Mid-Flood	В	10.1	14:37	10.17	8.38	30.93	22.8	3.51	4	111	0.5	NW
I3	20190217	Fine	Moderate	Mid-Flood	M	5.6	14:37	10.24	8.14	30.65	22.8	3.01	2	111	0.43	NW
I3	20190217	Fine	Moderate	Mid-Flood	M	5.6	14:38	10.1	8.34	30.47	22.7	2.96	3	113	0.41	NW
I3	20190217	Fine	Moderate	Mid-Flood	S	1	14:38	10.01	8.48	30.78	22.7	2.88	<2	113	0.33	NW
I3	20190217	Fine	Moderate	Mid-Flood	S	1	14:39	9.85	8.36	30.29	22.7	2.8	3	114	0.35	NW
I4	20190217	Fine	Moderate	Mid-Flood	В	11	14:42	10.18	8.27	30.52	22.8	3.76	3	114	0.45	NW
I4	20190217	Fine	Moderate	Mid-Flood	В	11	14:43	10.09	8.49	30.11	22.8	3.76	4	113	0.44	NW
I4	20190217	Fine	Moderate	Mid-Flood	M	6	14:43	9.9	8.43	31	22.6	3.32	3	113	0.42	NW
I4	20190217	Fine	Moderate	Mid-Flood	M	6	14:44	9.84	8.11	30.22	22.6	3.29	<2	112	0.4	NW
I4	20190217	Fine	Moderate	Mid-Flood	S	1	14:44	9.74	8.18	30.53	22.8	2.93	2	112	0.28	NW
I4	20190217	Fine	Moderate	Mid-Flood	S	1	14:45	9.83	8.37	30.57	22.7	3	<2	112	0.3	NW
I5	20190217	Fine	Moderate	Mid-Flood	В	10.6	14:48	10.5	8.35	30.27	22.6	3.51	3	113	0.5	NW
I5	20190217	Fine	Moderate	Mid-Flood	В	10.6	14:49	10.51	8.03	30.04	22.8	3.47	3	113	0.51	NW
I5	20190217	Fine	Moderate	Mid-Flood	M	5.8	14:49	10.53	8.45	30.53	22.7	3.14	4	113	0.35	NW
I5	20190217	Fine	Moderate	Mid-Flood	M	5.8	14:50	10.55	8.07	30.03	22.6	3.21	3	112	0.37	NW
I5	20190217	Fine	Moderate	Mid-Flood	S	1	14:50	10.51	8.47	30.85	22.8	2.8	4	112	0.29	NW
I5	20190217	Fine	Moderate	Mid-Flood	S	1	14:51	10.53	8.24	30.66	22.8	2.89	4	112	0.27	NW
I6	20190217	Fine	Moderate	Mid-Flood	В	10.4	15:18	10.31	8.16	30.01	22.6	3.71	3	113	0.53	NW
I6	20190217	Fine	Moderate	Mid-Flood	В	10.4	15:19	10.34	8.08	30.4	22.8	3.81	3	112	0.52	NW
I6	20190217	Fine	Moderate	Mid-Flood	M	5.7	15:19	10.38	8.39	30.39	22.8	3.17	3	112	0.36	NW
I6	20190217	Fine	Moderate	Mid-Flood	M	5.7	15:20	10.48	8.19	30.38	22.7	3.14	4	112	0.34	NW
I6	20190217	Fine	Moderate	Mid-Flood	S	1	15:20	10.63	8.49	30.53	22.7	2.54	2	113	0.33	NW
I6	20190217	Fine	Moderate	Mid-Flood	S	1	15:21	10.61	8.41	30.86	22.6	2.61	4	113	0.34	NW
I7	20190217	Fine	Moderate	Mid-Flood	В	9.9	15:12	10.44	8.34	30.37	22.8	3.66	4	112	0.54	NW
I7	20190217	Fine	Moderate	Mid-Flood	В	9.9	15:12	10.58	8.16	30.14	22.8	3.56	3	112	0.54	NW
17	20190217	Fine	Moderate	Mid-Flood	M	5.5	15:13	10.48	8.41	30.17	22.8	3.11	3	113	0.38	NW
17	20190217	Fine	Moderate	Mid-Flood	M	5.5	15:13	10.61	8.14	30.69	22.8	3.17	2	112	0.39	NW
17	20190217	Fine	Moderate	Mid-Flood	S	1	15:14	10.65	8.04	31	22.8	2.87	3	112	0.31	NW
17	20190217	Fine	Moderate	Mid-Flood	S	1	15:14	10.74	8.49	30.42	22.7	2.89	3	112	0.33	NW
I8	20190217	Fine	Moderate	Mid-Flood	В	9.2	15:06	10.21	8.13	30.05	22.8	3.62	4	113	0.45	NW
18	20190217	Fine	Moderate	Mid-Flood	В	9.2	15:06	10.24	8.1	30.6	22.8	3.67	2	112	0.45	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
18	20190217	Fine	Moderate	Mid-Flood	M	5.1	15:07	10.05	8.49	30.36	22.8	3.3	2	112	0.37	NW
18	20190217	Fine	Moderate	Mid-Flood	M	5.1	15:07	10.01	8.11	30.49	22.7	3.22	3	113	0.39	NW
18	20190217	Fine	Moderate	Mid-Flood	S	1	15:08	9.97	8.21	30.01	22.7	2.58	3	113	0.25	NW
18	20190217	Fine	Moderate	Mid-Flood	S	1	15:08	10.1	8.23	30.16	22.6	2.61	3	113	0.24	NW
I9	20190217	Fine	Moderate	Mid-Flood	В	9.5	15:00	9.52	8.31	30.11	22.6	3.61	<2	112	0.46	NW
I9	20190217	Fine	Moderate	Mid-Flood	В	9.5	15:00	9.67	8.34	30.32	22.8	3.67	2	113	0.47	NW
19	20190217	Fine	Moderate	Mid-Flood	M	5.3	15:01	9.7	8.3	30.42	22.8	3.44	4	114	0.4	NW
I9	20190217	Fine	Moderate	Mid-Flood	M	5.3	15:01	9.73	8.21	30.33	22.8	3.53	4	114	0.42	NW
I 9	20190217	Fine	Moderate	Mid-Flood	S	1	15:02	9.59	8.12	30.99	22.7	2.68	3	113	0.26	NW
19	20190217	Fine	Moderate	Mid-Flood	S	1	15:02	9.52	8.21	30.08	22.6	2.6	4	113	0.28	NW
I10	20190217	Fine	Moderate	Mid-Flood	В	9.8	14:54	9.94	8.24	30.73	22.7	3.74	2	113	0.49	NW
I10	20190217	Fine	Moderate	Mid-Flood	В	9.8	14:54	9.92	8.4	30.94	22.6	3.75	<2	113	0.49	NW
I10	20190217	Fine	Moderate	Mid-Flood	M	5.4	14:55	9.91	8.32	30.34	22.7	3.5	2	112	0.35	NW
I10	20190217	Fine	Moderate	Mid-Flood	M	5.4	14:55	10.1	8.35	30.11	22.7	3.43	3	113	0.33	NW
I10	20190217	Fine	Moderate	Mid-Flood	S	1	14:56	10.11	8.05	30.22	22.7	2.7	3	114	0.35	NW
I10	20190217	Fine	Moderate	Mid-Flood	S	1	14:56	10.29	8.21	30.63	22.7	2.72	3	112	0.35	NW
UC1	20190218	Cloudy	Moderate	Mid-Ebb	В	10.6	10:56	9.84	8.44	31	20	4.43	4	112	0.21	SE
UC1	20190218	Cloudy	Moderate	Mid-Ebb	В	10.6	10:56	9.75	8.01	30.22	19.8	4.45	3	111	0.22	SE
UC1	20190218	Cloudy	Moderate	Mid-Ebb	M	5.8	10:56	9.75	8.41	30	20	3.87	5	113	0.4	SE
UC1	20190218	Cloudy	Moderate	Mid-Ebb	M	5.8	10:57	9.83	8.27	30.1	19.8	3.93	4	113	0.42	SE
UC1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	10:57	9.68	8.06	30.82	20	3.06	3	112	0.4	SE
UC1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	10:57	9.64	8.13	31	20	3.16	4	112	0.38	SE
UC2	20190218	Cloudy	Moderate	Mid-Ebb	В	10.7	11:01	9.82	8.29	30.79	19.8	4.24	4	111	0.21	SE
UC2	20190218	Cloudy	Moderate	Mid-Ebb	В	10.7	11:01	10.02	8.01	30.45	20	4.16	5	111	0.2	SE
UC2	20190218	Cloudy	Moderate	Mid-Ebb	M	5.9	11:02	10.14	8.25	30.41	19.8	3.65	3	112	0.31	SE
UC2	20190218	Cloudy	Moderate	Mid-Ebb	M	5.9	11:02	10.03	8.26	30.73	20	3.74	3	111	0.32	SE
UC2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:02	10.22	8.32	30.67	19.8	3.01	4	112	0.42	SE
UC2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:03	10.12	8.13	30.22	20	3.11	3	111	0.44	SE
I1	20190218	Cloudy	Moderate	Mid-Ebb	В	9.4	11:07	10.21	8.1	30.65	20	4.31	4	112	0.28	SE
I1	20190218	Cloudy	Moderate	Mid-Ebb	В	9.4	11:07	10.2	8.33	30.1	19.9	4.22	3	111	0.3	SE
I1	20190218	Cloudy	Moderate	Mid-Ebb	M	5.2	11:08	10.08	8.36	30.71	19.8	3.89	4	112	0.32	SE
I1	20190218	Cloudy	Moderate	Mid-Ebb	M	5.2	11:08	10.18	8.18	30.27	19.8	3.79	3	111	0.33	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:09	10.01	8.5	30.54	20	3.32	5	112	0.42	SE
I1	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:09	10.21	8.27	30.17	19.8	3.31	4	113	0.41	SE
I2	20190218	Cloudy	Moderate	Mid-Ebb	В	10.4	11:10	10.02	8.49	30.05	19.9	4.19	2	113	0.26	SE
I2	20190218	Cloudy	Moderate	Mid-Ebb	В	10.4	11:11	10.04	8.37	30.09	20	4.27	4	111	0.24	SE
I2	20190218	Cloudy	Moderate	Mid-Ebb	M	5.7	11:11	9.99	8.23	30.05	19.9	3.87	2	110	0.4	SE
I2	20190218	Cloudy	Moderate	Mid-Ebb	M	5.7	11:12	10.02	8.1	30.48	19.9	3.94	3	110	0.39	SE
I2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:12	10.12	8.14	30.49	19.8	3.27	3	112	0.48	SE
I2	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:12	10.1	8.14	30.63	19.8	3.3	4	112	0.46	SE
I3	20190218	Cloudy	Moderate	Mid-Ebb	В	11	11:14	9.86	8.06	30.7	19.9	4.23	4	111	0.29	SE
I3	20190218	Cloudy	Moderate	Mid-Ebb	В	11	11:14	9.82	8.5	30.86	20	4.16	5	112	0.29	SE
I3	20190218	Cloudy	Moderate	Mid-Ebb	M	6	11:14	9.66	8.46	30.96	19.8	3.56	5	112	0.3	SE
I3	20190218	Cloudy	Moderate	Mid-Ebb	M	6	11:15	9.75	8.22	30.77	19.8	3.56	5	111	0.28	SE
I3	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:15	9.73	8.21	30.88	19.9	3.28	5	112	0.4	SE
I3	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:16	9.64	8.08	30.66	19.8	3.28	6	110	0.38	SE
I4	20190218	Cloudy	Moderate	Mid-Ebb	В	9.2	11:20	10.62	8.07	30.88	19.9	4.29	7	112	0.25	SE
I4	20190218	Cloudy	Moderate	Mid-Ebb	В	9.2	11:20	10.58	8.25	30.61	19.9	4.33	8	112	0.24	SE
I4	20190218	Cloudy	Moderate	Mid-Ebb	M	5.1	11:21	10.5	8.47	30.69	19.9	3.84	6	112	0.4	SE
I4	20190218	Cloudy	Moderate	Mid-Ebb	M	5.1	11:21	10.7	8.25	30.1	20	3.85	5	111	0.41	SE
I4	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:22	10.81	8.45	30.47	19.8	3.41	7	112	0.41	SE
I4	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:22	10.96	8.5	30.62	19.8	3.43	6	112	0.39	SE
I5	20190218	Cloudy	Moderate	Mid-Ebb	В	9	11:24	10.7	8.03	30.4	20	4.45	8	112	0.28	SE
I5	20190218	Cloudy	Moderate	Mid-Ebb	В	9	11:25	10.57	8.08	30.4	19.9	4.5	7	112	0.28	SE
I5	20190218	Cloudy	Moderate	Mid-Ebb	M	5	11:25	10.54	8.49	30.65	20	3.53	6	111	0.31	SE
I5	20190218	Cloudy	Moderate	Mid-Ebb	M	5	11:25	10.39	8.01	30.92	19.8	3.5	7	112	0.33	SE
I5	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:26	10.53	8.3	30.57	19.9	3.41	8	112	0.4	SE
I5	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:26	10.35	8.03	30.86	19.9	3.4	8	113	0.38	SE
I6	20190218	Cloudy	Moderate	Mid-Ebb	В	10.8	11:46	10.55	8.43	30.93	19.8	4.12	4	111	0.29	SE
I6	20190218	Cloudy	Moderate	Mid-Ebb	В	10.8	11:46	10.41	8	30.34	19.8	4.09	4	112	0.31	SE
I6	20190218	Cloudy	Moderate	Mid-Ebb	M	5.9	11:46	10.26	8.44	30.38	19.8	3.8	6	112	0.38	SE
I6	20190218	Cloudy	Moderate	Mid-Ebb	M	5.9	11:47	10.22	8.11	30.59	20	3.8	6	111	0.39	SE
I6	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:47	10.11	8.07	30.65	20	3.04	6	111	0.41	SE
I6	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:48	10.19	8.17	30.99	19.8	3.11	7	112	0.41	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I7	20190218	Cloudy	Moderate	Mid-Ebb	В	9.8	11:41	10.39	8.2	30.29	20	4.27	5	112	0.21	SE
I7	20190218	Cloudy	Moderate	Mid-Ebb	В	9.8	11:41	10.39	8.2	30.59	20	4.35	4	112	0.23	SE
I7	20190218	Cloudy	Moderate	Mid-Ebb	M	5.4	11:42	10.45	8.35	30.12	19.9	3.94	6	112	0.39	SE
I7	20190218	Cloudy	Moderate	Mid-Ebb	M	5.4	11:42	10.42	8.23	30.3	20	3.84	5	112	0.39	SE
I7	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:42	10.36	8.5	30.43	19.9	3.06	6	112	0.44	SE
I7	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:43	10.24	8.36	30.36	20	3.03	6	112	0.44	SE
18	20190218	Cloudy	Moderate	Mid-Ebb	В	9	11:36	10.17	8.23	30.21	19.8	4.39	3	112	0.2	SE
I8	20190218	Cloudy	Moderate	Mid-Ebb	В	9	11:37	10.06	8.09	30.41	19.9	4.38	4	111	0.19	SE
I8	20190218	Cloudy	Moderate	Mid-Ebb	M	5	11:37	10.02	8.24	30.33	19.9	3.55	3	111	0.34	SE
18	20190218	Cloudy	Moderate	Mid-Ebb	M	5	11:37	9.96	8.47	30.88	19.8	3.56	4	112	0.34	SE
18	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:38	9.89	8.49	30.6	19.8	3.34	4	112	0.4	SE
I8	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:38	9.69	8.37	30.85	19.8	3.26	3	112	0.4	SE
I9	20190218	Cloudy	Moderate	Mid-Ebb	В	9.9	11:32	10.77	8.29	30.82	19.9	4.4	4	112	0.2	SE
I9	20190218	Cloudy	Moderate	Mid-Ebb	В	9.9	11:32	10.91	8.4	30.22	19.9	4.31	3	112	0.22	SE
19	20190218	Cloudy	Moderate	Mid-Ebb	M	5.5	11:32	10.78	8.39	30.05	19.8	3.56	4	111	0.32	SE
19	20190218	Cloudy	Moderate	Mid-Ebb	M	5.5	11:33	10.86	8.26	30.54	20	3.5	3	113	0.3	SE
I9	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:33	10.9	8.07	30.95	19.9	3.05	5	113	0.43	SE
I 9	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:33	11.02	8.33	30.37	20	3.05	5	113	0.44	SE
I10	20190218	Cloudy	Moderate	Mid-Ebb	В	9.5	11:28	10.66	8.17	30.95	19.9	4.09	4	112	0.24	SE
I10	20190218	Cloudy	Moderate	Mid-Ebb	В	9.5	11:28	10.84	8.22	30.94	19.8	4.16	4	112	0.26	SE
I10	20190218	Cloudy	Moderate	Mid-Ebb	M	5.3	11:29	11	8.23	30.97	19.9	3.74	3	113	0.32	SE
I10	20190218	Cloudy	Moderate	Mid-Ebb	M	5.3	11:29	11.14	8.27	30.01	20	3.65	4	113	0.32	SE
I10	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:29	10.95	8.34	30.37	19.8	3.4	4	113	0.5	SE
I10	20190218	Cloudy	Moderate	Mid-Ebb	S	1	11:30	10.95	8.49	30.98	20	3.5	3	113	0.49	SE
UC1	20190218	Drizzle	Moderate	Mid-Flood	В	9.1	15:39	9.82	8.48	30.43	19.9	4.36	6	113	0.28	NW
UC1	20190218	Drizzle	Moderate	Mid-Flood	В	9.1	15:39	9.9	8.49	30.36	20	4.27	6	113	0.28	NW
UC1	20190218	Drizzle	Moderate	Mid-Flood	M	5.1	15:40	9.83	8.14	30.33	19.9	3.58	6	114	0.39	NW
UC1	20190218	Drizzle	Moderate	Mid-Flood	M	5.1	15:40	9.92	8.37	30.58	20	3.63	7	113	0.38	NW
UC1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:41	9.73	8.2	30.17	20	3.36	6	113	0.47	NW
UC1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:41	9.81	8.39	30.17	19.9	3.43	7	114	0.48	NW
UC2	20190218	Drizzle	Moderate	Mid-Flood	В	10	15:44	10.21	8.11	30.1	19.9	4.46	4	112	0.23	NW
UC2	20190218	Drizzle	Moderate	Mid-Flood	В	10	15:45	10.22	8.05	30.54	19.8	4.52	4	112	0.25	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190218	Drizzle	Moderate	Mid-Flood	M	5.5	15:45	10.04	8.01	30.21	19.9	3.61	5	114	0.4	NW
UC2	20190218	Drizzle	Moderate	Mid-Flood	M	5.5	15:46	9.88	8.05	30.38	19.9	3.58	5	113	0.39	NW
UC2	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:46	10.06	8.4	30.24	19.8	3.19	5	114	0.49	NW
UC2	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:46	9.99	8.11	30.24	19.9	3.28	6	112	0.49	NW
I1	20190218	Drizzle	Moderate	Mid-Flood	В	10.6	15:49	10.59	8.27	30.47	19.9	4.25	3	112	0.22	NW
I1	20190218	Drizzle	Moderate	Mid-Flood	В	10.6	15:49	10.51	8.26	30.56	19.9	4.15	4	113	0.22	NW
I1	20190218	Drizzle	Moderate	Mid-Flood	M	5.8	15:49	10.49	8.5	30.92	20	3.72	4	112	0.37	NW
I1	20190218	Drizzle	Moderate	Mid-Flood	M	5.8	15:50	10.32	8.46	30.44	20	3.69	4	112	0.35	NW
I1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:50	10.26	8.26	30.82	19.9	3.37	4	113	0.42	NW
I1	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:51	10.28	8.42	30.29	19.8	3.3	3	112	0.42	NW
I2	20190218	Drizzle	Moderate	Mid-Flood	В	9.4	15:55	10.56	8.23	30.82	19.8	4.44	4	113	0.3	NW
I2	20190218	Drizzle	Moderate	Mid-Flood	В	9.4	15:55	10.53	8.22	30.51	19.9	4.48	3	112	0.31	NW
I2	20190218	Drizzle	Moderate	Mid-Flood	M	5.2	15:56	10.44	8.21	30.92	19.9	3.63	4	113	0.34	NW
I2	20190218	Drizzle	Moderate	Mid-Flood	M	5.2	15:56	10.27	8.19	30.46	19.9	3.63	3	112	0.34	NW
I2	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:57	10.36	8.46	30.58	20	3.04	2	113	0.45	NW
I2	20190218	Drizzle	Moderate	Mid-Flood	S	1	15:57	10.48	8	30.09	19.9	3.02	3	114	0.47	NW
I3	20190218	Drizzle	Moderate	Mid-Flood	В	9.5	15:58	9.92	8.1	30.09	19.9	4.33	3	113	0.28	NW
I3	20190218	Drizzle	Moderate	Mid-Flood	В	9.5	15:59	9.78	8.05	30.63	19.8	4.26	4	112	0.29	NW
I3	20190218	Drizzle	Moderate	Mid-Flood	M	5.3	15:59	9.66	8.29	30.57	19.8	3.86	4	112	0.31	NW
I3	20190218	Drizzle	Moderate	Mid-Flood	M	5.3	15:59	9.61	8.4	30.65	19.8	3.82	3	112	0.33	NW
I3	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:00	9.71	8.1	30.76	19.9	3.46	5	112	0.45	NW
I3	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:00	9.63	8.01	30.49	20	3.47	4	112	0.44	NW
I4	20190218	Drizzle	Moderate	Mid-Flood	В	10.2	16:04	9.87	8.13	30.38	20	4.46	5	112	0.27	NW
I4	20190218	Drizzle	Moderate	Mid-Flood	В	10.2	16:04	9.9	8.04	30.43	19.8	4.4	4	112	0.27	NW
I4	20190218	Drizzle	Moderate	Mid-Flood	M	5.6	16:04	9.99	8.35	30.07	20	3.94	4	114	0.4	NW
I4	20190218	Drizzle	Moderate	Mid-Flood	M	5.6	16:05	10.1	8.29	30.43	19.9	3.9	5	112	0.39	NW
I4	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:05	9.93	8.1	30.59	19.9	3.17	3	112	0.47	NW
I4	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:06	9.83	8.3	30.81	19.9	3.23	4	113	0.45	NW
I5	20190218	Drizzle	Moderate	Mid-Flood	В	9.1	16:08	10.66	8.14	30.32	20	4.21	6	112	0.2	NW
I5	20190218	Drizzle	Moderate	Mid-Flood	В	9.1	16:08	10.74	8.22	30.6	19.9	4.26	6	112	0.21	NW
I5	20190218	Drizzle	Moderate	Mid-Flood	M	5.1	16:09	10.9	8.36	30.89	19.8	3.65	5	114	0.33	NW
I5	20190218	Drizzle	Moderate	Mid-Flood	M	5.1	16:09	10.97	8.09	30.14	19.9	3.68	6	112	0.33	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:09	11.01	8.2	30.53	20	3.3	5	114	0.48	NW
I5	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:10	11.03	8.17	30.99	19.9	3.4	4	111	0.49	NW
I6	20190218	Drizzle	Moderate	Mid-Flood	В	9	16:30	10.77	8.2	30.85	19.9	4.17	7	113	0.21	NW
I6	20190218	Drizzle	Moderate	Mid-Flood	В	9	16:31	10.88	8.08	30.91	19.8	4.13	6	113	0.21	NW
I6	20190218	Drizzle	Moderate	Mid-Flood	M	5	16:31	10.97	8.35	30.88	20	3.87	7	112	0.34	NW
I6	20190218	Drizzle	Moderate	Mid-Flood	M	5	16:31	11.06	8.02	30.45	19.8	3.91	6	113	0.36	NW
I6	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:32	11	8.42	30.81	19.8	3.37	6	113	0.47	NW
I6	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:32	10.86	8.18	30.21	19.9	3.45	6	113	0.46	NW
I7	20190218	Drizzle	Moderate	Mid-Flood	В	10.3	16:25	10.78	8.23	30.84	19.8	4.49	6	113	0.22	NW
I7	20190218	Drizzle	Moderate	Mid-Flood	В	10.3	16:25	10.75	8	30.92	20	4.54	5	112	0.2	NW
I7	20190218	Drizzle	Moderate	Mid-Flood	M	5.7	16:25	10.66	8.04	30.76	19.8	3.72	5	113	0.37	NW
I7	20190218	Drizzle	Moderate	Mid-Flood	M	5.7	16:26	10.55	8.42	30.08	19.8	3.65	5	113	0.39	NW
I7	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:26	10.51	8.12	30.64	20	3.13	6	111	0.5	NW
I7	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:26	10.34	8.18	30.65	19.8	3.2	6	112	0.48	NW
18	20190218	Drizzle	Moderate	Mid-Flood	В	10.4	16:21	10.54	8.01	30.56	19.9	4.2	4	113	0.2	NW
18	20190218	Drizzle	Moderate	Mid-Flood	В	10.4	16:21	10.39	8.32	30.52	19.9	4.17	5	111	0.19	NW
18	20190218	Drizzle	Moderate	Mid-Flood	M	5.7	16:22	10.44	8.25	31	20	3.77	4	110	0.39	NW
18	20190218	Drizzle	Moderate	Mid-Flood	M	5.7	16:22	10.58	8.49	30.11	19.8	3.81	5	112	0.37	NW
18	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:22	10.68	8.42	30.95	19.9	3.41	5	113	0.4	NW
18	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:23	10.79	8.28	31	19.8	3.38	5	113	0.39	NW
I 9	20190218	Drizzle	Moderate	Mid-Flood	В	9.9	16:17	10	8	30.85	20	4.1	4	113	0.2	NW
19	20190218	Drizzle	Moderate	Mid-Flood	В	9.9	16:17	9.92	8.25	30.39	20	4	5	112	0.22	NW
I 9	20190218	Drizzle	Moderate	Mid-Flood	M	5.5	16:18	9.8	8.04	30	20	3.6	4	112	0.4	NW
19	20190218	Drizzle	Moderate	Mid-Flood	M	5.5	16:18	10	8.27	30	20	3.67	5	113	0.41	NW
19	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:19	9.93	8.23	30.7	19.9	3.2	4	113	0.45	NW
I 9	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:19	10.05	8.26	30.58	19.9	3.3	5	113	0.43	NW
I10	20190218	Drizzle	Moderate	Mid-Flood	В	10.3	16:12	10.6	8	30.02	19.9	4	5	112	0.27	NW
I10	20190218	Drizzle	Moderate	Mid-Flood	В	10.3	16:13	10.48	8	30.67	19.9	4.05	4	112	0.28	NW
I10	20190218	Drizzle	Moderate	Mid-Flood	M	5.7	16:13	10.37	8.03	30.55	20	3.6	6	112	0.37	NW
I10	20190218	Drizzle	Moderate	Mid-Flood	M	5.7	16:14	10.57	8.1	30.92	19.9	3.58	5	113	0.36	NW
I10	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:14	10.64	8.05	30.8	20	3.14	6	113	0.49	NW
I10	20190218	Drizzle	Moderate	Mid-Flood	S	1	16:14	10.59	8.16	30.86	20	3.17	5	112	0.49	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190219	Cloudy	Calm	Mid-Ebb	В	9.8	12:03	10.53	8.31	30.43	19.3	4.58	7	112	0.35	SE
UC1	20190219	Cloudy	Calm	Mid-Ebb	В	9.8	12:03	10.59	8.05	30.16	19.5	4.57	7	111	0.34	SE
UC1	20190219	Cloudy	Calm	Mid-Ebb	M	5.4	12:03	10.69	8.01	30.7	19.3	4.5	6	112	0.48	SE
UC1	20190219	Cloudy	Calm	Mid-Ebb	M	5.4	12:04	10.77	8.16	30.32	19.4	4.51	7	110	0.47	SE
UC1	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:04	10.74	8.43	30.61	19.5	3.99	6	111	0.54	SE
UC1	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:04	10.81	8.04	30.16	19.4	3.93	7	112	0.56	SE
UC2	20190219	Cloudy	Calm	Mid-Ebb	В	9.7	12:09	10.19	8.38	30.03	19.3	4.65	9	111	0.3	SE
UC2	20190219	Cloudy	Calm	Mid-Ebb	В	9.7	12:09	10.09	8.47	30.36	19.3	4.59	8	111	0.32	SE
UC2	20190219	Cloudy	Calm	Mid-Ebb	M	5.4	12:10	10.1	8.25	30.44	19.5	4.35	6	111	0.46	SE
UC2	20190219	Cloudy	Calm	Mid-Ebb	M	5.4	12:10	10.2	8.24	30.72	19.3	4.28	7	112	0.44	SE
UC2	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:10	10.15	8.29	31	19.4	3.86	8	113	0.5	SE
UC2	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:11	10.17	8.16	30.18	19.5	3.82	9	112	0.49	SE
I1	20190219	Cloudy	Calm	Mid-Ebb	В	9.9	12:16	10.57	8.17	30.13	19.5	4.69	7	110	0.33	SE
I1	20190219	Cloudy	Calm	Mid-Ebb	В	9.9	12:16	10.5	8.25	30.43	19.4	4.69	7	110	0.34	SE
I1	20190219	Cloudy	Calm	Mid-Ebb	M	5.5	12:17	10.44	8.25	30.83	19.3	4.27	7	110	0.4	SE
I1	20190219	Cloudy	Calm	Mid-Ebb	M	5.5	12:17	10.35	8.27	30.26	19.4	4.22	7	111	0.42	SE
I1	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:18	10.4	8.16	30.8	19.5	3.61	7	112	0.59	SE
I1	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:18	10.47	8.02	30.67	19.3	3.61	6	112	0.59	SE
I2	20190219	Cloudy	Calm	Mid-Ebb	В	9.3	12:21	10.27	8.19	30.71	19.4	4.56	8	112	0.33	SE
I2	20190219	Cloudy	Calm	Mid-Ebb	В	9.3	12:22	10.28	8.35	30.68	19.4	4.52	9	110	0.33	SE
I2	20190219	Cloudy	Calm	Mid-Ebb	M	5.2	12:22	10.28	8.36	30.68	19.3	4.33	9	111	0.43	SE
I2	20190219	Cloudy	Calm	Mid-Ebb	M	5.2	12:23	10.21	8.39	30.78	19.3	4.29	10	111	0.44	SE
I2	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:23	10.24	8.32	30.29	19.5	3.92	10	111	0.56	SE
I2	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:23	10.32	8.24	30.56	19.4	3.83	11	111	0.54	SE
I3	20190219	Cloudy	Calm	Mid-Ebb	В	10.4	12:27	9.91	8.36	30.77	19.4	4.59	10	112	0.35	SE
I3	20190219	Cloudy	Calm	Mid-Ebb	В	10.4	12:27	9.97	8.32	30.6	19.4	4.54	9	111	0.35	SE
13	20190219	Cloudy	Calm	Mid-Ebb	M	5.7	12:27	9.88	8.1	30.31	19.4	4.45	9	112	0.45	SE
13	20190219	Cloudy	Calm	Mid-Ebb	M	5.7	12:28	9.87	8.37	30.46	19.3	4.46	10	112	0.46	SE
13	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:28	9.95	8.12	30.47	19.5	3.75	9	110	0.57	SE
13	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:29	10	8.44	30.55	19.3	3.82	9	111	0.55	SE
I4	20190219	Cloudy	Calm	Mid-Ebb	В	10.4	12:31	9.88	8.2	30.96	19.4	4.98	7	110	0.3	SE
I4	20190219	Cloudy	Calm	Mid-Ebb	В	10.4	12:31	9.81	8.27	30.6	19.5	5	6	112	0.31	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I 4	20190219	Cloudy	Calm	Mid-Ebb	M	5.7	12:32	9.77	8.47	30.48	19.3	4.16	8	111	0.45	SE
I4	20190219	Cloudy	Calm	Mid-Ebb	M	5.7	12:32	9.82	8.24	30.17	19.4	4.2	8	111	0.46	SE
I4	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:33	9.89	8.15	30.14	19.3	3.61	8	110	0.55	SE
I4	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:33	9.8	8.28	30.74	19.5	3.62	7	111	0.57	SE
I5	20190219	Cloudy	Calm	Mid-Ebb	В	9.5	12:37	10.6	8.08	30.97	19.5	4.66	10	112	0.38	SE
I5	20190219	Cloudy	Calm	Mid-Ebb	В	9.5	12:38	10.63	8.01	30.21	19.3	4.69	10	112	0.37	SE
I5	20190219	Cloudy	Calm	Mid-Ebb	M	5.3	12:38	10.73	8.04	30.53	19.5	4.45	10	110	0.48	SE
I5	20190219	Cloudy	Calm	Mid-Ebb	M	5.3	12:38	10.83	8.48	30.59	19.4	4.37	10	111	0.46	SE
I5	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:39	10.75	8.45	30.52	19.4	3.92	8	110	0.54	SE
I5	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:39	10.73	8.21	30.63	19.5	3.88	8	110	0.54	SE
I6	20190219	Cloudy	Calm	Mid-Ebb	В	10	12:59	9.67	8.27	30.81	19.4	4.7	10	112	0.37	SE
I6	20190219	Cloudy	Calm	Mid-Ebb	В	10	12:59	9.58	8.13	30.46	19.5	4.79	10	111	0.38	SE
I6	20190219	Cloudy	Calm	Mid-Ebb	M	5.5	12:59	9.54	8.16	30.27	19.3	4.45	8	112	0.47	SE
I6	20190219	Cloudy	Calm	Mid-Ebb	M	5.5	13:00	9.62	8.38	30.82	19.5	4.5	9	111	0.46	SE
I6	20190219	Cloudy	Calm	Mid-Ebb	S	1	13:00	9.54	8.4	30.22	19.4	3.75	9	112	0.55	SE
I6	20190219	Cloudy	Calm	Mid-Ebb	S	1	13:01	9.62	8.3	30.29	19.4	3.71	9	112	0.56	SE
I7	20190219	Cloudy	Calm	Mid-Ebb	В	9.3	12:55	9.93	8.06	30.63	19.5	4.6	8	111	0.34	SE
I7	20190219	Cloudy	Calm	Mid-Ebb	В	9.3	12:55	9.99	8.24	30.95	19.3	4.62	9	111	0.35	SE
I7	20190219	Cloudy	Calm	Mid-Ebb	M	5.2	12:56	10.04	8.31	30.84	19.4	4.23	7	111	0.41	SE
I7	20190219	Cloudy	Calm	Mid-Ebb	M	5.2	12:56	10.02	8.43	30.18	19.3	4.16	8	111	0.39	SE
I7	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:56	9.93	8.25	30.42	19.5	3.89	10	111	0.54	SE
I7	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:57	9.95	8.37	30.97	19.5	3.87	10	111	0.54	SE
I8	20190219	Cloudy	Calm	Mid-Ebb	В	10	12:50	9.82	8.09	30.21	19.5	4.52	9	111	0.4	SE
I8	20190219	Cloudy	Calm	Mid-Ebb	В	10	12:51	9.82	8.11	30.01	19.4	4.56	8	111	0.38	SE
I8	20190219	Cloudy	Calm	Mid-Ebb	M	5.5	12:51	9.8	8.22	30.23	19.3	4.49	8	111	0.47	SE
I8	20190219	Cloudy	Calm	Mid-Ebb	M	5.5	12:51	9.88	8.19	30.49	19.4	4.59	8	111	0.49	SE
I8	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:52	9.85	8.18	30.08	19.3	3.84	8	112	0.51	SE
18	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:52	9.89	8.22	30.88	19.5	3.84	8	110	0.51	SE
I9	20190219	Cloudy	Calm	Mid-Ebb	В	9.1	12:46	10.19	8.2	30.28	19.4	4.78	6	111	0.4	SE
I 9	20190219	Cloudy	Calm	Mid-Ebb	В	9.1	12:46	10.18	8.24	30.6	19.4	4.72	7	111	0.38	SE
I 9	20190219	Cloudy	Calm	Mid-Ebb	M	5.1	12:46	10.18	8.49	30.3	19.3	4.46	8	112	0.44	SE
19	20190219	Cloudy	Calm	Mid-Ebb	M	5.1	12:47	10.08	8.41	30.68	19.4	4.41	9	111	0.44	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I9	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:47	10.04	8.36	30.33	19.3	3.55	7	111	0.52	SE
I9	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:47	10.02	8.01	30.96	19.5	3.49	7	111	0.53	SE
I10	20190219	Cloudy	Calm	Mid-Ebb	В	9.3	12:42	9.88	8.22	30.15	19.3	4.61	9	93	0.37	SE
I10	20190219	Cloudy	Calm	Mid-Ebb	В	9.3	12:42	9.82	8.44	30.69	19.3	4.51	9	107	0.36	SE
I10	20190219	Cloudy	Calm	Mid-Ebb	M	5.2	12:43	9.88	8.11	30.39	19.5	4.06	9	79	0.43	SE
I10	20190219	Cloudy	Calm	Mid-Ebb	M	5.2	12:43	9.84	8.04	30.85	19.4	4.07	9	78	0.44	SE
I10	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:43	9.92	8.19	30.03	19.5	3.97	8	112	0.56	SE
I10	20190219	Cloudy	Calm	Mid-Ebb	S	1	12:44	9.89	8.21	30.99	19.3	3.98	8	112	0.56	SE
UC1	20190219	Cloudy	Light	Mid-Flood	В	10.8	14:54	9.6	8.28	30.34	19.4	4.75	5	110	0.39	NW
UC1	20190219	Cloudy	Light	Mid-Flood	В	10.8	14:54	9.66	8.25	30.55	19.4	4.85	5	109	0.38	NW
UC1	20190219	Cloudy	Light	Mid-Flood	M	5.9	14:55	9.57	8.05	30.34	19.4	4.14	4	111	0.48	NW
UC1	20190219	Cloudy	Light	Mid-Flood	M	5.9	14:55	9.65	8.27	30.65	19.5	4.09	5	111	0.49	NW
UC1	20190219	Cloudy	Light	Mid-Flood	S	1	14:56	9.7	8.06	30.6	19.4	3.52	6	111	0.57	NW
UC1	20190219	Cloudy	Light	Mid-Flood	S	1	14:56	9.8	8.41	30.7	19.5	3.52	6	109	0.57	NW
UC2	20190219	Cloudy	Light	Mid-Flood	В	9.6	14:59	10.2	8.49	30.91	19.4	4.84	7	109	0.3	NW
UC2	20190219	Cloudy	Light	Mid-Flood	В	9.6	15:00	10.15	8.11	30.26	19.5	4.76	7	110	0.32	NW
UC2	20190219	Cloudy	Light	Mid-Flood	M	5.3	15:00	10.25	8.27	30.23	19.3	4.15	7	111	0.5	NW
UC2	20190219	Cloudy	Light	Mid-Flood	M	5.3	15:01	10.28	8.35	30	19.3	4.25	7	109	0.48	NW
UC2	20190219	Cloudy	Light	Mid-Flood	S	1	15:01	10.37	8.15	30.88	19.4	3.59	6	110	0.54	NW
UC2	20190219	Cloudy	Light	Mid-Flood	S	1	15:01	10.44	8	30.07	19.4	3.56	6	110	0.52	NW
I1	20190219	Cloudy	Light	Mid-Flood	В	9.6	15:05	10.52	8.02	30.95	19.3	4.74	8	111	0.38	NW
I1	20190219	Cloudy	Light	Mid-Flood	В	9.6	15:05	10.58	8.36	30.77	19.4	4.72	9	110	0.39	NW
I1	20190219	Cloudy	Light	Mid-Flood	M	5.3	15:05	10.67	8.19	30.97	19.4	4.12	9	111	0.49	NW
I1	20190219	Cloudy	Light	Mid-Flood	M	5.3	15:06	10.6	8.34	30.15	19.3	4.11	9	110	0.48	NW
I1	20190219	Cloudy	Light	Mid-Flood	S	1	15:06	10.65	8.08	30.34	19.4	3.73	10	110	0.6	NW
I1	20190219	Cloudy	Light	Mid-Flood	S	1	15:07	10.75	8.09	30.65	19.4	3.65	10	108	0.58	NW
I2	20190219	Cloudy	Light	Mid-Flood	В	9.4	15:09	9.97	8.24	30.3	19.4	4.97	8	112	0.3	NW
I2	20190219	Cloudy	Light	Mid-Flood	В	9.4	15:09	9.88	8.04	30.18	19.4	4.99	8	111	0.32	NW
I2	20190219	Cloudy	Light	Mid-Flood	M	5.2	15:10	9.87	8.28	30.7	19.4	4.17	7	112	0.47	NW
I2	20190219	Cloudy	Light	Mid-Flood	M	5.2	15:10	9.78	8.38	30.41	19.3	4.07	7	110	0.49	NW
I2	20190219	Cloudy	Light	Mid-Flood	S	1	15:11	9.84	8.41	30.85	19.4	3.81	10	110	0.57	NW
I2	20190219	Cloudy	Light	Mid-Flood	S	1	15:11	9.88	8.45	30.37	19.3	3.79	9	112	0.59	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I3	20190219	Cloudy	Light	Mid-Flood	В	11	15:14	10.05	8.26	30.81	19.5	4.74	10	112	0.38	NW
I3	20190219	Cloudy	Light	Mid-Flood	В	11	15:15	10.07	8.02	30.47	19.4	4.77	9	111	0.36	NW
I3	20190219	Cloudy	Light	Mid-Flood	M	6	15:15	10.1	8	30.59	19.3	4.46	9	111	0.5	NW
I3	20190219	Cloudy	Light	Mid-Flood	M	6	15:15	10.04	8.33	30.87	19.3	4.38	9	112	0.51	NW
I3	20190219	Cloudy	Light	Mid-Flood	S	1	15:16	10.04	8.25	30.05	19.4	3.97	8	111	0.53	NW
I3	20190219	Cloudy	Light	Mid-Flood	S	1	15:16	9.95	8.15	30.49	19.4	3.99	9	111	0.52	NW
I 4	20190219	Cloudy	Light	Mid-Flood	В	9.2	15:18	10.39	8.35	30.78	19.3	4.7	8	112	0.37	NW
I 4	20190219	Cloudy	Light	Mid-Flood	В	9.2	15:18	10.37	8.37	30.94	19.4	4.66	8	111	0.35	NW
I 4	20190219	Cloudy	Light	Mid-Flood	M	5.1	15:18	10.38	8.32	30.84	19.5	4.01	9	112	0.47	NW
I 4	20190219	Cloudy	Light	Mid-Flood	M	5.1	15:19	10.29	8.48	30.15	19.4	3.97	9	112	0.49	NW
I 4	20190219	Cloudy	Light	Mid-Flood	S	1	15:19	10.2	8.07	30.11	19.5	3.71	9	112	0.6	NW
I 4	20190219	Cloudy	Light	Mid-Flood	S	1	15:20	10.1	8.25	30.81	19.5	3.72	9	111	0.58	NW
I5	20190219	Cloudy	Light	Mid-Flood	В	9.7	15:22	10.36	8.22	30.62	19.3	4.69	7	111	0.3	NW
I5	20190219	Cloudy	Light	Mid-Flood	В	9.7	15:22	10.4	8	30.41	19.4	4.63	7	112	0.3	NW
I5	20190219	Cloudy	Light	Mid-Flood	M	5.4	15:23	10.35	8.41	30.98	19.4	4.47	6	111	0.44	NW
I5	20190219	Cloudy	Light	Mid-Flood	M	5.4	15:23	10.33	8.22	30.85	19.3	4.37	6	111	0.42	NW
I5	20190219	Cloudy	Light	Mid-Flood	S	1	15:23	10.27	8.16	30.71	19.4	3.79	6	111	0.51	NW
I5	20190219	Cloudy	Light	Mid-Flood	S	1	15:24	10.31	8.41	30.91	19.3	3.77	7	111	0.49	NW
I6	20190219	Cloudy	Light	Mid-Flood	В	9.2	15:46	9.67	8.3	30.21	19.3	4.71	6	111	0.34	NW
I6	20190219	Cloudy	Light	Mid-Flood	В	9.2	15:47	9.69	8.27	30	19.5	4.81	5	111	0.34	NW
I6	20190219	Cloudy	Light	Mid-Flood	M	5.1	15:47	9.71	8.38	30.56	19.3	4.3	7	112	0.5	NW
I6	20190219	Cloudy	Light	Mid-Flood	M	5.1	15:47	9.65	8.35	30.08	19.3	4.2	6	111	0.48	NW
I6	20190219	Cloudy	Light	Mid-Flood	S	1	15:48	9.75	8.39	30.74	19.3	3.75	4	111	0.59	NW
I6	20190219	Cloudy	Light	Mid-Flood	S	1	15:48	9.7	8.32	30.23	19.5	3.8	5	112	0.58	NW
I7	20190219	Cloudy	Light	Mid-Flood	В	9	15:42	9.86	8.43	30.6	19.3	4.61	7	112	0.4	NW
I7	20190219	Cloudy	Light	Mid-Flood	В	9	15:42	9.93	8.29	30.6	19.5	4.61	6	111	0.41	NW
I7	20190219	Cloudy	Light	Mid-Flood	M	5	15:42	9.88	8.41	30.61	19.4	4.13	5	112	0.49	NW
I7	20190219	Cloudy	Light	Mid-Flood	M	5	15:43	9.97	8.01	30.37	19.5	4.18	6	112	0.49	NW
I7	20190219	Cloudy	Light	Mid-Flood	S	1	15:43	10.01	8.25	30.39	19.4	3.9	5	111	0.6	NW
I7	20190219	Cloudy	Light	Mid-Flood	S	1	15:43	9.98	8.27	30.02	19.3	3.81	5	111	0.59	NW
18	20190219	Cloudy	Light	Mid-Flood	В	9	15:35	10.29	8.23	30.58	19.4	4.96	6	112	0.38	NW
I8	20190219	Cloudy	Light	Mid-Flood	В	9	15:35	10.2	8.38	30.45	19.5	5	4	111	0.38	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
18	20190219	Cloudy	Light	Mid-Flood	M	5	15:36	10.19	8.36	30.86	19.4	4.32	5	111	0.43	NW
18	20190219	Cloudy	Light	Mid-Flood	M	5	15:36	10.17	8.37	30.32	19.4	4.41	6	111	0.45	NW
18	20190219	Cloudy	Light	Mid-Flood	S	1	15:36	10.21	8.3	30.73	19.5	3.5	6	111	0.51	NW
I8	20190219	Cloudy	Light	Mid-Flood	S	1	15:37	10.27	8.16	30.35	19.3	3.58	7	111	0.49	NW
I9	20190219	Cloudy	Light	Mid-Flood	В	9.9	15:31	10.15	8.05	30.91	19.3	4.66	9	111	0.4	NW
I9	20190219	Cloudy	Light	Mid-Flood	В	9.9	15:31	10.12	8.36	30.59	19.5	4.73	10	112	0.41	NW
I9	20190219	Cloudy	Light	Mid-Flood	M	5.5	15:32	10.17	8.04	30.01	19.3	4.3	8	112	0.43	NW
I9	20190219	Cloudy	Light	Mid-Flood	M	5.5	15:32	10.11	8.08	30.17	19.3	4.27	9	112	0.42	NW
I9	20190219	Cloudy	Light	Mid-Flood	S	1	15:33	10.1	8.09	30.02	19.5	3.78	6	111	0.52	NW
I9	20190219	Cloudy	Light	Mid-Flood	S	1	15:33	10.13	8.21	30.77	19.4	3.78	6	110	0.52	NW
I10	20190219	Cloudy	Light	Mid-Flood	В	9.1	15:36	10.28	8.28	30.62	19.5	4.58	4	110	0.35	NW
I10	20190219	Cloudy	Light	Mid-Flood	В	9.1	15:37	10.28	8.19	30.15	19.3	4.51	5	111	0.35	NW
I10	20190219	Cloudy	Light	Mid-Flood	M	5.1	15:37	10.22	8.44	30.51	19.5	4.05	8	112	0.5	NW
I10	20190219	Cloudy	Light	Mid-Flood	M	5.1	15:38	10.16	8.03	30.34	19.4	4.12	8	112	0.51	NW
I10	20190219	Cloudy	Light	Mid-Flood	S	1	15:38	10.23	8.3	30.41	19.3	3.93	7	110	0.57	NW
I10	20190219	Cloudy	Light	Mid-Flood	S	1	15:38	10.33	8.39	30.73	19.3	3.92	8	112	0.55	NW
UC1	20190220	Cloudy	Light	Mid-Ebb	В	10.3	14:03	10.65	8.62	30.93	20.4	4.13	8	115	0.21	SE
UC1	20190220	Cloudy	Light	Mid-Ebb	В	10.3	14:03	10.56	8.75	30.65	20.5	4.17	7	113	0.22	SE
UC1	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:04	10.52	8.38	30.01	20.5	3.51	7	114	0.34	SE
UC1	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:04	10.65	8.32	30.77	20.4	3.49	8	114	0.32	SE
UC1	20190220	Cloudy	Light	Mid-Ebb	S	1	14:05	10.57	8.65	30.81	20.4	3	6	114	0.45	SE
UC1	20190220	Cloudy	Light	Mid-Ebb	S	1	14:05	10.71	8.73	30.27	20.6	3.06	6	114	0.43	SE
UC2	20190220	Cloudy	Light	Mid-Ebb	В	11	14:08	10.85	8.32	30.62	20.5	4.13	6	114	0.16	SE
UC2	20190220	Cloudy	Light	Mid-Ebb	В	11	14:08	10.81	8.51	30.32	20.4	4.08	6	114	0.16	SE
UC2	20190220	Cloudy	Light	Mid-Ebb	M	6	14:09	10.75	8.7	30.67	20.6	3.87	7	113	0.27	SE
UC2	20190220	Cloudy	Light	Mid-Ebb	M	6	14:09	10.71	8.47	31.38	20.4	3.79	8	114	0.29	SE
UC2	20190220	Cloudy	Light	Mid-Ebb	S	1	14:10	10.68	8.33	30.82	20.6	3.5	7	114	0.37	SE
UC2	20190220	Cloudy	Light	Mid-Ebb	S	1	14:10	10.77	8.31	30.97	20.5	3.59	6	114	0.37	SE
I1	20190220	Cloudy	Light	Mid-Ebb	В	10.6	14:15	11.24	8.58	30	20.5	4.06	6	113	0.22	SE
I1	20190220	Cloudy	Light	Mid-Ebb	В	10.6	14:15	11.1	8.6	30.75	20.5	4.12	6	113	0.22	SE
I1	20190220	Cloudy	Light	Mid-Ebb	M	5.8	14:16	11.28	8.74	30.56	20.5	3.88	9	112	0.34	SE
I1	20190220	Cloudy	Light	Mid-Ebb	M	5.8	14:16	11.08	8.61	31.28	20.5	3.9	8	113	0.35	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190220	Cloudy	Light	Mid-Ebb	S	1	14:17	11.21	8.48	30.98	20.6	3.5	8	113	0.38	SE
I1	20190220	Cloudy	Light	Mid-Ebb	S	1	14:17	11.16	8.3	31.2	20.6	3.57	8	114	0.38	SE
I2	20190220	Cloudy	Light	Mid-Ebb	В	10.8	14:19	11.08	8.37	30.18	20.6	4.33	7	113	0.15	SE
I2	20190220	Cloudy	Light	Mid-Ebb	В	10.8	14:19	11.09	8.69	31.16	20.6	4.3	6	113	0.13	SE
I2	20190220	Cloudy	Light	Mid-Ebb	M	5.9	14:20	11.28	8.78	30.72	20.6	3.74	9	113	0.31	SE
I2	20190220	Cloudy	Light	Mid-Ebb	M	5.9	14:20	11.16	8.44	30.21	20.6	3.81	8	113	0.32	SE
I2	20190220	Cloudy	Light	Mid-Ebb	S	1	14:21	11.11	8.61	30.89	20.5	3.49	8	113	0.42	SE
I2	20190220	Cloudy	Light	Mid-Ebb	S	1	14:21	10.94	8.49	30.5	20.5	3.5	8	113	0.44	SE
I3	20190220	Cloudy	Light	Mid-Ebb	В	9.5	14:23	10.85	8.34	31.12	20.5	4.2	6	113	0.21	SE
I3	20190220	Cloudy	Light	Mid-Ebb	В	9.5	14:23	10.99	8.58	30.52	20.5	4.23	6	113	0.2	SE
I3	20190220	Cloudy	Light	Mid-Ebb	M	5.3	14:24	10.88	8.59	31.4	20.5	3.65	6	114	0.3	SE
I3	20190220	Cloudy	Light	Mid-Ebb	M	5.3	14:24	11.04	8.46	30.57	20.6	3.61	5	113	0.29	SE
I3	20190220	Cloudy	Light	Mid-Ebb	S	1	14:25	10.89	8.45	30.32	20.6	3.18	8	112	0.37	SE
I3	20190220	Cloudy	Light	Mid-Ebb	S	1	14:25	10.96	8.44	30.75	20.4	3.22	7	113	0.39	SE
I4	20190220	Cloudy	Light	Mid-Ebb	В	10.4	14:28	11.48	8.31	31.33	20.6	4.43	4	113	0.21	SE
I4	20190220	Cloudy	Light	Mid-Ebb	В	10.4	14:29	11.6	8.64	31.19	20.5	4.42	3	113	0.22	SE
I4	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:29	11.55	8.42	30.98	20.5	3.61	6	114	0.3	SE
I4	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:30	11.62	8.64	31	20.6	3.59	5	112	0.3	SE
I4	20190220	Cloudy	Light	Mid-Ebb	S	1	14:30	11.68	8.44	30.51	20.6	3.07	5	112	0.45	SE
I4	20190220	Cloudy	Light	Mid-Ebb	S	1	14:31	11.72	8.5	30.74	20.5	3.17	6	113	0.47	SE
I5	20190220	Cloudy	Light	Mid-Ebb	В	9.7	14:32	10.66	8.39	30.55	20.5	4.15	6	113	0.21	SE
I5	20190220	Cloudy	Light	Mid-Ebb	В	9.7	14:33	10.51	8.31	31	20.4	4.21	6	113	0.21	SE
I5	20190220	Cloudy	Light	Mid-Ebb	M	5.4	14:33	10.38	8.48	30.68	20.6	3.82	6	114	0.28	SE
I5	20190220	Cloudy	Light	Mid-Ebb	M	5.4	14:34	10.28	8.73	30.78	20.4	3.89	7	113	0.27	SE
I5	20190220	Cloudy	Light	Mid-Ebb	S	1	14:34	10.21	8.42	30.58	20.6	3.22	7	113	0.41	SE
I5	20190220	Cloudy	Light	Mid-Ebb	S	1	14:35	10.02	8.43	30.81	20.5	3.3	6	113	0.39	SE
I6	20190220	Cloudy	Light	Mid-Ebb	В	9.5	14:52	10.91	8.35	30.52	20.5	4.37	5	113	0.25	SE
I6	20190220	Cloudy	Light	Mid-Ebb	В	9.5	14:53	10.79	8.38	30.34	20.5	4.27	6	112	0.26	SE
I6	20190220	Cloudy	Light	Mid-Ebb	M	5.3	14:53	10.59	8.74	30.23	20.4	3.8	6	113	0.31	SE
I6	20190220	Cloudy	Light	Mid-Ebb	M	5.3	14:54	10.74	8.5	30.96	20.4	3.7	5	114	0.3	SE
I6	20190220	Cloudy	Light	Mid-Ebb	S	1	14:54	10.83	8.51	30.76	20.5	3.37	7	113	0.4	SE
I6	20190220	Cloudy	Light	Mid-Ebb	S	1	14:55	10.87	8.58	30.95	20.6	3.44	8	112	0.41	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I7	20190220	Cloudy	Light	Mid-Ebb	В	10.4	14:48	11.34	8.53	31.14	20.6	4.07	8	112	0.2	SE
I7	20190220	Cloudy	Light	Mid-Ebb	В	10.4	14:49	11.17	8.67	31.12	20.5	4.07	8	113	0.19	SE
I7	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:49	11.37	8.3	30.99	20.6	3.63	7	112	0.34	SE
I7	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:50	11.18	8.4	31.34	20.4	3.68	8	112	0.33	SE
I7	20190220	Cloudy	Light	Mid-Ebb	S	1	14:50	11.11	8.38	30.7	20.5	3.23	7	114	0.36	SE
I7	20190220	Cloudy	Light	Mid-Ebb	S	1	14:51	11.14	8.75	30.3	20.5	3.32	7	113	0.37	SE
18	20190220	Cloudy	Light	Mid-Ebb	В	11	14:44	10.72	8.32	30.27	20.5	4.18	8	114	0.18	SE
I8	20190220	Cloudy	Light	Mid-Ebb	В	11	14:45	10.66	8.78	30	20.5	4.21	8	114	0.2	SE
I8	20190220	Cloudy	Light	Mid-Ebb	M	6	14:45	10.83	8.71	30.04	20.6	3.58	8	113	0.3	SE
I8	20190220	Cloudy	Light	Mid-Ebb	M	6	14:46	10.72	8.65	30.98	20.5	3.6	7	114	0.28	SE
I8	20190220	Cloudy	Light	Mid-Ebb	S	1	14:46	10.8	8.55	30.17	20.6	3.18	8	114	0.41	SE
I8	20190220	Cloudy	Light	Mid-Ebb	S	1	14:47	10.64	8.8	30.79	20.4	3.19	8	113	0.39	SE
I9	20190220	Cloudy	Light	Mid-Ebb	В	9.7	14:40	10.69	8.51	30.2	20.6	4.34	10	113	0.24	SE
19	20190220	Cloudy	Light	Mid-Ebb	В	9.7	14:40	10.76	8.71	30.66	20.6	4.39	10	114	0.23	SE
I9	20190220	Cloudy	Light	Mid-Ebb	M	5.4	14:41	10.72	8.43	30.52	20.6	3.69	9	114	0.31	SE
19	20190220	Cloudy	Light	Mid-Ebb	M	5.4	14:41	10.9	8.39	30.01	20.4	3.73	10	113	0.33	SE
I9	20190220	Cloudy	Light	Mid-Ebb	S	1	14:42	10.71	8.71	30.72	20.4	3.31	9	114	0.41	SE
I9	20190220	Cloudy	Light	Mid-Ebb	S	1	14:42	10.86	8.43	30.07	20.4	3.34	9	114	0.4	SE
I10	20190220	Cloudy	Light	Mid-Ebb	В	10.4	14:36	10.98	8.56	30.76	20.6	4.24	8	114	0.15	SE
I10	20190220	Cloudy	Light	Mid-Ebb	В	10.4	14:36	10.87	8.79	30.81	20.6	4.15	8	114	0.16	SE
I10	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:37	10.9	8.76	30.38	20.5	3.65	7	114	0.33	SE
I10	20190220	Cloudy	Light	Mid-Ebb	M	5.7	14:37	10.72	8.57	30.4	20.6	3.61	8	114	0.35	SE
I10	20190220	Cloudy	Light	Mid-Ebb	S	1	14:38	10.69	8.47	30.54	20.5	3.06	8	115	0.43	SE
I10	20190220	Cloudy	Light	Mid-Ebb	S	1	14:38	10.53	8.66	30.85	20.4	3.06	7	115	0.42	SE
UC1	20190220	Sunny	Moderate	Mid-Flood	В	10.8	16:20	11.25	8.3	31	20.6	4.46	7	113	0.25	NW
UC1	20190220	Sunny	Moderate	Mid-Flood	В	10.8	16:20	11.23	8.62	31.04	20.4	4.53	7	113	0.23	NW
UC1	20190220	Sunny	Moderate	Mid-Flood	M	5.9	16:21	11.2	8.58	31.37	20.5	3.88	6	113	0.35	NW
UC1	20190220	Sunny	Moderate	Mid-Flood	M	5.9	16:21	11.15	8.63	30.81	20.5	3.98	5	113	0.34	NW
UC1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:22	11	8.77	31.4	20.5	3.43	5	114	0.35	NW
UC1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:22	10.92	8.7	30.09	20.4	3.48	5	114	0.35	NW
UC2	20190220	Sunny	Moderate	Mid-Flood	В	10.8	16:25	11.06	8.68	30.83	20.4	4.12	6	114	0.25	NW
UC2	20190220	Sunny	Moderate	Mid-Flood	В	10.8	16:25	11.05	8.48	31.25	20.6	4.16	5	114	0.23	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190220	Sunny	Moderate	Mid-Flood	M	5.9	16:26	11	8.41	30.1	20.4	3.84	6	114	0.29	NW
UC2	20190220	Sunny	Moderate	Mid-Flood	M	5.9	16:26	11.16	8.32	30.72	20.4	3.76	7	115	0.27	NW
UC2	20190220	Sunny	Moderate	Mid-Flood	S	1	16:27	11.31	8.8	30.72	20.5	3.41	5	113	0.38	NW
UC2	20190220	Sunny	Moderate	Mid-Flood	S	1	16:27	11.19	8.49	31.39	20.4	3.51	6	113	0.36	NW
I1	20190220	Sunny	Moderate	Mid-Flood	В	10	16:31	10.82	8.68	30.32	20.5	4.24	8	114	0.23	NW
I1	20190220	Sunny	Moderate	Mid-Flood	В	10	16:31	10.67	8.41	31.01	20.5	4.27	9	114	0.25	NW
I1	20190220	Sunny	Moderate	Mid-Flood	M	5.5	16:32	10.49	8.68	30.8	20.6	3.54	4	114	0.27	NW
I1	20190220	Sunny	Moderate	Mid-Flood	M	5.5	16:32	10.29	8.7	30.35	20.4	3.54	5	114	0.26	NW
I1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:33	10.42	8.33	30.46	20.4	3.49	5	114	0.37	NW
I1	20190220	Sunny	Moderate	Mid-Flood	S	1	16:33	10.59	8.74	30.46	20.5	3.55	4	114	0.35	NW
I2	20190220	Sunny	Moderate	Mid-Flood	В	10.2	16:35	11.25	8.7	30.94	20.5	4.23	7	114	0.22	NW
I2	20190220	Sunny	Moderate	Mid-Flood	В	10.2	16:36	11.36	8.31	30.06	20.4	4.26	6	113	0.23	NW
I2	20190220	Sunny	Moderate	Mid-Flood	M	5.6	16:36	11.48	8.55	31.36	20.6	3.88	6	113	0.33	NW
I2	20190220	Sunny	Moderate	Mid-Flood	M	5.6	16:37	11.6	8.52	30.9	20.6	3.93	6	115	0.32	NW
I2	20190220	Sunny	Moderate	Mid-Flood	S	1	16:37	11.72	8.67	30.19	20.6	3.25	5	114	0.43	NW
I2	20190220	Sunny	Moderate	Mid-Flood	S	1	16:38	11.61	8.7	30.18	20.6	3.33	4	115	0.42	NW
I3	20190220	Sunny	Moderate	Mid-Flood	В	10.3	16:39	10.68	8.46	31.21	20.5	4.19	8	114	0.25	NW
13	20190220	Sunny	Moderate	Mid-Flood	В	10.3	16:40	10.62	8.74	31.1	20.6	4.24	7	113	0.27	NW
13	20190220	Sunny	Moderate	Mid-Flood	M	5.7	16:40	10.7	8.51	30.57	20.6	3.77	4	114	0.29	NW
I3	20190220	Sunny	Moderate	Mid-Flood	M	5.7	16:41	10.75	8.71	31.16	20.5	3.74	5	114	0.29	NW
I3	20190220	Sunny	Moderate	Mid-Flood	S	1	16:41	10.81	8.76	31.22	20.6	3.43	7	114	0.36	NW
13	20190220	Sunny	Moderate	Mid-Flood	S	1	16:42	10.93	8.61	30.66	20.5	3.5	6	114	0.38	NW
I4	20190220	Sunny	Moderate	Mid-Flood	В	9.8	16:44	11.58	8.32	31.08	20.6	4.44	7	114	0.22	NW
I4	20190220	Sunny	Moderate	Mid-Flood	В	9.8	16:45	11.76	8.37	31.32	20.6	4.4	8	114	0.22	NW
I4	20190220	Sunny	Moderate	Mid-Flood	M	5.4	16:45	11.95	8.55	30.87	20.4	3.5	8	113	0.27	NW
I4	20190220	Sunny	Moderate	Mid-Flood	M	5.4	16:46	11.94	8.55	31.35	20.4	3.5	7	114	0.28	NW
I4	20190220	Sunny	Moderate	Mid-Flood	S	1	16:46	12.05	8.43	30.9	20.6	3.07	8	113	0.4	NW
I4	20190220	Sunny	Moderate	Mid-Flood	S	1	16:47	11.94	8.39	30.04	20.6	3.14	8	114	0.39	NW
I5	20190220	Sunny	Moderate	Mid-Flood	В	10.5	16:48	10.9	8.56	31.24	20.4	4.13	6	115	0.24	NW
I5	20190220	Sunny	Moderate	Mid-Flood	В	10.5	16:49	10.89	8.68	30.82	20.6	4.23	6	115	0.26	NW
I5	20190220	Sunny	Moderate	Mid-Flood	M	5.8	16:49	10.74	8.41	31.37	20.5	3.84	7	114	0.35	NW
I5	20190220	Sunny	Moderate	Mid-Flood	M	5.8	16:50	10.75	8.35	31.38	20.5	3.91	8	115	0.35	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190220	Sunny	Moderate	Mid-Flood	S	1	16:50	10.55	8.68	31.2	20.4	3.1	6	114	0.36	NW
I5	20190220	Sunny	Moderate	Mid-Flood	S	1	16:51	10.74	8.52	31.24	20.6	3.02	7	114	0.36	NW
I6	20190220	Sunny	Moderate	Mid-Flood	В	10	17:08	11.13	8.75	31.35	20.5	4.3	4	115	0.18	NW
I6	20190220	Sunny	Moderate	Mid-Flood	В	10	17:09	11.09	8.5	30.26	20.5	4.39	4	114	0.17	NW
I6	20190220	Sunny	Moderate	Mid-Flood	M	5.5	17:09	11.1	8.34	30.76	20.5	3.54	5	114	0.26	NW
I6	20190220	Sunny	Moderate	Mid-Flood	M	5.5	17:10	11.15	8.63	30.67	20.5	3.59	5	115	0.26	NW
I6	20190220	Sunny	Moderate	Mid-Flood	S	1	17:10	11.2	8.78	30.61	20.4	3.18	6	114	0.36	NW
I6	20190220	Sunny	Moderate	Mid-Flood	S	1	17:11	11.1	8.78	31.24	20.6	3.23	Note 3	114	0.38	NW
I7	20190220	Sunny	Moderate	Mid-Flood	В	10.8	17:04	10.85	8.49	30.63	20.6	4.43	7	114	0.2	NW
I7	20190220	Sunny	Moderate	Mid-Flood	В	10.8	17:04	10.74	8.72	30.01	20.6	4.38	7	115	0.18	NW
I7	20190220	Sunny	Moderate	Mid-Flood	M	5.9	17:05	10.74	8.59	30.55	20.4	3.74	7	114	0.33	NW
I7	20190220	Sunny	Moderate	Mid-Flood	M	5.9	17:05	10.89	8.34	30.69	20.4	3.8	8	114	0.34	NW
I7	20190220	Sunny	Moderate	Mid-Flood	S	1	17:06	11.03	8.78	31.24	20.5	3.24	7	115	0.4	NW
I7	20190220	Sunny	Moderate	Mid-Flood	S	1	17:06	11.17	8.44	30.63	20.6	3.15	8	114	0.42	NW
18	20190220	Sunny	Moderate	Mid-Flood	В	10.7	17:00	11.52	8.53	30.77	20.4	4.24	7	114	0.22	NW
18	20190220	Sunny	Moderate	Mid-Flood	В	10.7	17:00	11.46	8.72	31.08	20.5	4.16	8	114	0.21	NW
18	20190220	Sunny	Moderate	Mid-Flood	M	5.9	17:01	11.58	8.62	30.96	20.4	3.98	6	115	0.3	NW
18	20190220	Sunny	Moderate	Mid-Flood	M	5.9	17:01	11.54	8.6	31.22	20.6	3.97	6	115	0.3	NW
18	20190220	Sunny	Moderate	Mid-Flood	S	1	17:02	11.42	8.78	30.34	20.5	3.05	4	114	0.37	NW
I8	20190220	Sunny	Moderate	Mid-Flood	S	1	17:02	11.44	8.8	30.62	20.5	2.98	5	114	0.37	NW
19	20190220	Sunny	Moderate	Mid-Flood	В	10.2	16:56	11.16	8.55	30.98	20.5	4.01	6	114	0.17	NW
19	20190220	Sunny	Moderate	Mid-Flood	В	10.2	16:56	11.08	8.62	30.89	20.5	4.1	7	116	0.16	NW
19	20190220	Sunny	Moderate	Mid-Flood	M	5.6	16:57	11.06	8.4	30.46	20.6	3.52	6	114	0.31	NW
19	20190220	Sunny	Moderate	Mid-Flood	M	5.6	16:57	10.92	8.38	31.1	20.4	3.54	5	114	0.31	NW
I 9	20190220	Sunny	Moderate	Mid-Flood	S	1	16:58	10.81	8.7	30.58	20.5	3.22	5	114	0.41	NW
19	20190220	Sunny	Moderate	Mid-Flood	S	1	16:58	10.71	8.37	30.02	20.4	3.19	5	114	0.39	NW
I10	20190220	Sunny	Moderate	Mid-Flood	В	10.9	16:52	10.85	8.62	31.23	20.6	4.41	4	115	0.22	NW
I10	20190220	Sunny	Moderate	Mid-Flood	В	10.9	16:52	10.97	8.73	31.06	20.4	4.37	6	114	0.22	NW
I10	20190220	Sunny	Moderate	Mid-Flood	M	6	16:53	10.8	8.39	30.8	20.4	3.89	6	114	0.32	NW
I10	20190220	Sunny	Moderate	Mid-Flood	M	6	16:53	10.85	8.66	30.21	20.5	3.94	5	114	0.31	NW
I10	20190220	Sunny	Moderate	Mid-Flood	S	1	16:54	10.85	8.76	30.61	20.5	3.5	6	115	0.42	NW
I10	20190220	Sunny	Moderate	Mid-Flood	S	1	16:54	10.86	8.45	30.82	20.4	3.45	5	115	0.42	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190221	Sunny	Light	Mid-Flood	В	8.9	9:02	11.97	9.02	32.94	22.7	3.5	3	114	0.28	SE
UC1	20190221	Sunny	Light	Mid-Flood	В	8.9	9:02	12.1	9.06	32.74	23.2	3.59	2	112	0.29	SE
UC1	20190221	Sunny	Light	Mid-Flood	M	5	9:03	11.9	9.06	32.44	23.2	2.55	2	113	0.3	SE
UC1	20190221	Sunny	Light	Mid-Flood	M	5	9:03	11.9	9.06	32.73	23.1	2.46	2	114	0.3	SE
UC1	20190221	Sunny	Light	Mid-Flood	S	1	9:04	11.73	9.01	31.33	22.5	2.43	3	113	0.43	SE
UC1	20190221	Sunny	Light	Mid-Flood	S	1	9:04	11.68	9.06	32.11	22.7	2.36	3	114	0.42	SE
UC2	20190221	Sunny	Light	Mid-Flood	В	9.1	9:07	11.72	9.07	32.19	22.8	3.21	7	114	0.3	SE
UC2	20190221	Sunny	Light	Mid-Flood	В	9.1	9:07	12.12	8.99	31.44	23.1	3.27	7	115	0.28	SE
UC2	20190221	Sunny	Light	Mid-Flood	M	5.1	9:08	12.23	9.04	29.59	22.6	2.95	6	114	0.36	SE
UC2	20190221	Sunny	Light	Mid-Flood	M	5.1	9:08	12.15	9.03	30.61	22.9	2.86	6	114	0.38	SE
UC2	20190221	Sunny	Light	Mid-Flood	S	1	9:09	12.14	9.06	32.76	22.8	2.4	6	115	0.48	SE
UC2	20190221	Sunny	Light	Mid-Flood	S	1	9:09	12.01	9.03	29.3	23	2.3	7	114	0.46	SE
I1	20190221	Sunny	Light	Mid-Flood	В	9.9	9:12	11.84	9.01	31.09	22.6	3.5	8	112	0.25	SE
I1	20190221	Sunny	Light	Mid-Flood	В	9.9	9:12	11.65	9.06	30.32	23	3.47	8	113	0.23	SE
I1	20190221	Sunny	Light	Mid-Flood	M	5.5	9:13	12.24	9	32.79	23	2.57	6	113	0.4	SE
I1	20190221	Sunny	Light	Mid-Flood	M	5.5	9:13	12.09	9	32.14	22.8	2.52	5	113	0.4	SE
I1	20190221	Sunny	Light	Mid-Flood	S	1	9:14	12	9.02	31.58	22.9	2.16	6	114	0.41	SE
I1	20190221	Sunny	Light	Mid-Flood	S	1	9:14	12.08	9.05	30.36	22.7	2.07	6	115	0.39	SE
I2	20190221	Sunny	Light	Mid-Flood	В	10.8	9:17	11.93	9.05	31.88	23.2	3.01	4	113	0.24	SE
I2	20190221	Sunny	Light	Mid-Flood	В	10.8	9:17	11.84	9.07	29.32	22.6	3.09	4	113	0.23	SE
I2	20190221	Sunny	Light	Mid-Flood	M	5.9	9:18	11.94	9.06	29.38	22.8	2.51	4	113	0.36	SE
I2	20190221	Sunny	Light	Mid-Flood	M	5.9	9:18	11.49	8.99	30.95	22.8	2.47	3	113	0.34	SE
I2	20190221	Sunny	Light	Mid-Flood	S	1	9:19	11.41	9.05	30.02	23.2	2.18	4	113	0.5	SE
I2	20190221	Sunny	Light	Mid-Flood	S	1	9:19	11.22	9	30.99	22.6	2.16	4	114	0.5	SE
I3	20190221	Sunny	Light	Mid-Flood	В	9	9:21	11.14	8.98	29.75	22.8	3.47	4	112	0.28	SE
I3	20190221	Sunny	Light	Mid-Flood	В	9	9:21	11.29	8.99	32.58	22.5	3.37	4	113	0.27	SE
I3	20190221	Sunny	Light	Mid-Flood	M	5	9:22	11.2	9.01	31.15	22.9	2.7	6	113	0.32	SE
I3	20190221	Sunny	Light	Mid-Flood	M	5	9:22	11.13	8.98	32.51	22.9	2.77	5	114	0.34	SE
I3	20190221	Sunny	Light	Mid-Flood	S	1	9:23	12.25	9.02	30.17	22.5	2.12	8	114	0.47	SE
I3	20190221	Sunny	Light	Mid-Flood	S	1	9:23	12.2	8.99	32.17	22.5	2.11	6	113	0.46	SE
I4	20190221	Sunny	Light	Mid-Flood	В	10.4	9:25	12.28	9.04	31.78	22.5	3.38	6	113	0.26	SE
I4	20190221	Sunny	Light	Mid-Flood	В	10.4	9:25	12.28	9.03	30.96	23.2	3.44	7	113	0.27	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I4	20190221	Sunny	Light	Mid-Flood	M	5.7	9:26	12.48	9.02	30.17	23	2.64	6	113	0.31	SE
I4	20190221	Sunny	Light	Mid-Flood	M	5.7	9:26	12.49	9.01	32.06	22.6	2.57	5	113	0.3	SE
I4	20190221	Sunny	Light	Mid-Flood	S	1	9:27	12.54	9.04	30.82	22.6	2.44	7	113	0.47	SE
I4	20190221	Sunny	Light	Mid-Flood	S	1	9:27	12.26	9.07	30.85	23.1	2.45	6	114	0.46	SE
I5	20190221	Sunny	Light	Mid-Flood	В	10.5	9:29	12.26	9.04	30.19	23.1	3.47	4	113	0.3	SE
I5	20190221	Sunny	Light	Mid-Flood	В	10.5	9:29	12.32	9.02	30.06	22.5	3.48	5	112	0.3	SE
I5	20190221	Sunny	Light	Mid-Flood	M	5.8	9:30	12.34	9	31.49	23.1	2.85	4	114	0.31	SE
I5	20190221	Sunny	Light	Mid-Flood	M	5.8	9:30	12.4	9.06	30.04	23.1	2.88	3	114	0.31	SE
I5	20190221	Sunny	Light	Mid-Flood	S	1	9:31	12.28	9.07	30.05	23.1	2.37	3	114	0.41	SE
I5	20190221	Sunny	Light	Mid-Flood	S	1	9:31	12.32	9	29.39	22.7	2.32	3	113	0.43	SE
I6	20190221	Sunny	Light	Mid-Flood	В	10.8	9:54	11.41	9	33.01	23.2	3.23	3	114	0.22	SE
I6	20190221	Sunny	Light	Mid-Flood	В	10.8	9:54	11.33	9.06	30.98	22.7	3.24	4	113	0.24	SE
I6	20190221	Sunny	Light	Mid-Flood	M	5.9	9:55	11.3	9.03	29.95	22.9	2.89	3	113	0.37	SE
I6	20190221	Sunny	Light	Mid-Flood	M	5.9	9:55	11.33	9.07	33.05	23	2.94	4	112	0.38	SE
I6	20190221	Sunny	Light	Mid-Flood	S	1	9:56	11.31	9.07	30.57	23.2	2	3	113	0.49	SE
I6	20190221	Sunny	Light	Mid-Flood	S	1	9:56	11.22	9.06	32.56	22.5	2.07	2	112	0.48	SE
I7	20190221	Sunny	Light	Mid-Flood	В	9.2	9:49	11.24	9.02	29.54	22.5	3.35	6	114	0.25	SE
I7	20190221	Sunny	Light	Mid-Flood	В	9.2	9:49	11.85	9.06	29.78	22.7	3.37	6	113	0.26	SE
I7	20190221	Sunny	Light	Mid-Flood	M	5.1	9:50	11.8	9.03	31.68	22.5	2.8	6	113	0.32	SE
I7	20190221	Sunny	Light	Mid-Flood	M	5.1	9:50	11.88	8.98	31.1	23	2.74	7	113	0.3	SE
I7	20190221	Sunny	Light	Mid-Flood	S	1	9:51	11.75	9.06	31.83	23	2.01	5	113	0.45	SE
I7	20190221	Sunny	Light	Mid-Flood	S	1	9:51	11.93	8.99	30.18	22.6	2.09	4	113	0.45	SE
18	20190221	Sunny	Light	Mid-Flood	В	9	9:43	11.77	9.06	31.94	23.2	3.07	5	114	0.22	SE
I8	20190221	Sunny	Light	Mid-Flood	В	9	9:43	11.88	9.01	30.48	23.1	3.04	4	113	0.24	SE
I8	20190221	Sunny	Light	Mid-Flood	M	5	9:44	12.24	9.01	31.69	22.5	2.77	6	113	0.37	SE
18	20190221	Sunny	Light	Mid-Flood	M	5	9:44	12.25	9.06	31.16	23	2.72	7	113	0.38	SE
18	20190221	Sunny	Light	Mid-Flood	S	1	9:45	12.13	9.07	30.28	22.8	2.33	4	114	0.45	SE
I8	20190221	Sunny	Light	Mid-Flood	S	1	9:45	12.03	9.01	32.84	23.2	2.32	5	113	0.45	SE
19	20190221	Sunny	Light	Mid-Flood	В	9.6	9:39	11.87	9.04	31.04	22.8	3.09	4	112	0.21	SE
I 9	20190221	Sunny	Light	Mid-Flood	В	9.6	9:39	11.77	9.07	29.4	22.9	3.17	4	112	0.2	SE
19	20190221	Sunny	Light	Mid-Flood	M	5.3	9:40	11.71	9.05	31.08	22.5	2.79	5	113	0.33	SE
I9	20190221	Sunny	Light	Mid-Flood	M	5.3	9:40	11.93	9.06	29.08	23	2.8	5	112	0.34	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I9	20190221	Sunny	Light	Mid-Flood	S	1	9:41	12	9.03	31.73	22.6	2.17	3	114	0.41	SE
I9	20190221	Sunny	Light	Mid-Flood	S	1	9:41	11.94	9.02	32.27	22.7	2.09	3	113	0.39	SE
I10	20190221	Sunny	Light	Mid-Flood	В	9.6	9:34	12.06	9.05	32.89	22.5	3.05	4	112	0.23	SE
I10	20190221	Sunny	Light	Mid-Flood	В	9.6	9:34	12.13	9.07	29.54	22.6	2.97	3	114	0.23	SE
I10	20190221	Sunny	Light	Mid-Flood	M	5.3	9:35	12.18	9.01	31.47	22.6	2.69	7	113	0.38	SE
I10	20190221	Sunny	Light	Mid-Flood	M	5.3	9:35	12.16	9.01	30.55	23.1	2.69	7	113	0.4	SE
I10	20190221	Sunny	Light	Mid-Flood	S	1	9:36	11.75	9.03	33.09	23.1	2.22	6	113	0.44	SE
I10	20190221	Sunny	Light	Mid-Flood	S	1	9:36	11.63	9.03	30.27	23	2.31	7	112	0.46	SE
UC1	20190221	Sunny	Light	Mid-Ebb	В	9.3	12:04	11.45	9.02	29.17	22.9	3.38	6	113	0.2	NW
UC1	20190221	Sunny	Light	Mid-Ebb	В	9.3	12:04	11.48	9.03	32.94	22.6	3.36	5	113	0.21	NW
UC1	20190221	Sunny	Light	Mid-Ebb	M	5.2	12:05	11.67	9	29.76	22.6	2.72	6	113	0.3	NW
UC1	20190221	Sunny	Light	Mid-Ebb	M	5.2	12:05	11.72	9.06	32.51	22.9	2.68	5	112	0.31	NW
UC1	20190221	Sunny	Light	Mid-Ebb	S	1	12:06	11.88	9.07	30.72	23.2	2.26	6	112	0.5	NW
UC1	20190221	Sunny	Light	Mid-Ebb	S	1	12:06	11.61	9.04	30.66	22.7	2.34	5	112	0.49	NW
UC2	20190221	Sunny	Light	Mid-Ebb	В	8.4	12:09	11.71	9.05	30.79	23.1	3.28	7	113	0.3	NW
UC2	20190221	Sunny	Light	Mid-Ebb	В	8.4	12:09	11.81	9.07	29.37	23	3.21	7	113	0.32	NW
UC2	20190221	Sunny	Light	Mid-Ebb	M	4.7	12:10	11.84	9.03	32.84	22.5	2.61	8	113	0.34	NW
UC2	20190221	Sunny	Light	Mid-Ebb	M	4.7	12:10	11.72	8.98	29.43	22.7	2.54	7	112	0.32	NW
UC2	20190221	Sunny	Light	Mid-Ebb	S	1	12:11	11.71	9	31.57	22.6	2.48	5	113	0.49	NW
UC2	20190221	Sunny	Light	Mid-Ebb	S	1	12:11	11.86	9.02	32.63	22.5	2.46	5	113	0.48	NW
I1	20190221	Sunny	Light	Mid-Ebb	В	8.7	12:15	11.55	9.05	32.55	22.7	3.21	4	113	0.26	NW
I1	20190221	Sunny	Light	Mid-Ebb	В	8.7	12:15	11.71	9.07	29.65	22.6	3.15	4	113	0.24	NW
I1	20190221	Sunny	Light	Mid-Ebb	M	4.9	12:16	11.65	8.98	31.41	22.6	2.79	6	112	0.3	NW
I1	20190221	Sunny	Light	Mid-Ebb	M	4.9	12:16	11.79	9.04	31.07	22.5	2.79	6	113	0.29	NW
I1	20190221	Sunny	Light	Mid-Ebb	S	1	12:17	11.68	8.98	29.59	22.9	2.12	7	113	0.45	NW
I1	20190221	Sunny	Light	Mid-Ebb	S	1	12:17	11.6	9.07	29.94	23.1	2.22	6	113	0.47	NW
I2	20190221	Sunny	Light	Mid-Ebb	В	9.2	12:19	11.59	9.01	30.44	22.8	3.4	5	112	0.29	NW
I2	20190221	Sunny	Light	Mid-Ebb	В	9.2	12:19	12.07	9.03	33.12	22.7	3.44	6	112	0.29	NW
I2	20190221	Sunny	Light	Mid-Ebb	M	5.1	12:20	12.08	9.05	32.91	22.8	2.65	5	113	0.33	NW
I2	20190221	Sunny	Light	Mid-Ebb	M	5.1	12:20	11.95	9.03	32.36	23.1	2.74	5	113	0.35	NW
I2	20190221	Sunny	Light	Mid-Ebb	S	1	12:21	11.89	9.01	32.99	22.6	2.02	6	113	0.43	NW
I2	20190221	Sunny	Light	Mid-Ebb	S	1	12:21	12.01	9.03	31.87	22.7	2.11	4	113	0.45	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
13	20190221	Sunny	Light	Mid-Ebb	В	9.7	12:23	11.85	9.07	32.13	22.5	3.04	4	112	0.23	NW
13	20190221	Sunny	Light	Mid-Ebb	В	9.7	12:23	11.67	9.01	32.32	23.2	3.14	5	112	0.25	NW
I3	20190221	Sunny	Light	Mid-Ebb	M	5.4	12:24	11.82	9.06	32.43	22.6	2.74	4	112	0.34	NW
I3	20190221	Sunny	Light	Mid-Ebb	M	5.4	12:24	11.66	9.06	29.97	23	2.75	6	113	0.34	NW
I3	20190221	Sunny	Light	Mid-Ebb	S	1	12:25	11.64	9.06	29.72	23.2	2	4	113	0.46	NW
I3	20190221	Sunny	Light	Mid-Ebb	S	1	12:25	11.69	9.05	29.59	22.8	2.1	6	113	0.47	NW
I4	20190221	Sunny	Light	Mid-Ebb	В	8.5	12:27	11.7	9.06	29.7	22.5	3.47	6	113	0.26	NW
I4	20190221	Sunny	Light	Mid-Ebb	В	8.5	12:27	11.62	8.99	31.91	23	3.4	5	114	0.24	NW
I4	20190221	Sunny	Light	Mid-Ebb	M	4.8	12:28	11.76	9.01	31.99	22.9	2.53	4	114	0.36	NW
I4	20190221	Sunny	Light	Mid-Ebb	M	4.8	12:28	11.42	9.01	30.89	22.8	2.5	4	114	0.34	NW
I4	20190221	Sunny	Light	Mid-Ebb	S	1	12:29	11.4	9	30.9	23.1	2.41	3	112	0.47	NW
I4	20190221	Sunny	Light	Mid-Ebb	S	1	12:29	11.26	9.06	30.23	22.5	2.5	4	113	0.48	NW
I5	20190221	Sunny	Light	Mid-Ebb	В	10	12:31	11.32	9.05	29.29	23	3.27	5	113	0.28	NW
I5	20190221	Sunny	Light	Mid-Ebb	В	10	12:31	11.24	9.07	31.87	23.1	3.21	6	113	0.26	NW
I5	20190221	Sunny	Light	Mid-Ebb	M	5.5	12:32	11.11	9.02	30.53	23	3	5	112	0.33	NW
I5	20190221	Sunny	Light	Mid-Ebb	M	5.5	12:32	11.2	8.98	30.48	22.5	3.06	4	113	0.32	NW
I5	20190221	Sunny	Light	Mid-Ebb	S	1	12:33	12.15	9.04	30.64	23	2.33	5	113	0.4	NW
I5	20190221	Sunny	Light	Mid-Ebb	S	1	12:33	12.23	9.07	30.65	23	2.39	5	112	0.38	NW
I6	20190221	Sunny	Light	Mid-Ebb	В	9.3	12:53	12.32	9.07	29.21	23	3.42	5	112	0.27	NW
I6	20190221	Sunny	Light	Mid-Ebb	В	9.3	12:53	12.3	9.03	29.12	23.1	3.37	5	114	0.28	NW
I6	20190221	Sunny	Light	Mid-Ebb	M	5.2	12:54	12.33	9.06	32.49	22.7	2.58	5	113	0.35	NW
I6	20190221	Sunny	Light	Mid-Ebb	M	5.2	12:54	12.53	9.07	29.84	22.7	2.68	4	112	0.37	NW
I6	20190221	Sunny	Light	Mid-Ebb	S	1	12:55	12.68	9.03	31.91	22.7	2.11	5	114	0.45	NW
I6	20190221	Sunny	Light	Mid-Ebb	S	1	12:55	11.36	8.99	30.59	22.9	2.2	5	113	0.47	NW
I7	20190221	Sunny	Light	Mid-Ebb	В	9.1	12:48	11.41	9.01	30.9	22.7	3.26	4	112	0.24	NW
I7	20190221	Sunny	Light	Mid-Ebb	В	9.1	12:48	11.23	8.98	29.78	22.6	3.22	3	112	0.22	NW
I7	20190221	Sunny	Light	Mid-Ebb	M	5.1	12:49	11.15	8.99	32.83	22.9	2.86	5	113	0.37	NW
I7	20190221	Sunny	Light	Mid-Ebb	M	5.1	12:49	11.17	8.98	29.23	22.8	2.92	4	112	0.37	NW
I7	20190221	Sunny	Light	Mid-Ebb	S	1	12:50	11.01	9.05	32.95	23.1	2.5	6	112	0.47	NW
I7	20190221	Sunny	Light	Mid-Ebb	S	1	12:50	10.94	9.05	33.09	23	2.56	5	112	0.48	NW
18	20190221	Sunny	Light	Mid-Ebb	В	9.3	12:44	12.3	9.06	30.84	23.2	3.31	4	113	0.29	NW
I8	20190221	Sunny	Light	Mid-Ebb	В	9.3	12:44	12.33	9.05	30.11	22.5	3.41	4	112	0.27	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
18	20190221	Sunny	Light	Mid-Ebb	M	5.2	12:45	12.33	8.99	32.27	22.6	2.98	3	113	0.36	NW
18	20190221	Sunny	Light	Mid-Ebb	M	5.2	12:45	12.27	9.02	29.65	22.9	2.88	3	113	0.36	NW
18	20190221	Sunny	Light	Mid-Ebb	S	1	12:46	12.34	9.06	29.36	23	2.2	3	113	0.48	NW
18	20190221	Sunny	Light	Mid-Ebb	S	1	12:46	12.44	9.07	32.98	23.2	2.25	4	112	0.46	NW
I9	20190221	Sunny	Light	Mid-Ebb	В	9.5	12:40	12.27	9.02	31.59	23.2	3.08	3	113	0.2	NW
I9	20190221	Sunny	Light	Mid-Ebb	В	9.5	12:40	11.68	9.05	31.68	23.2	3.06	4	113	0.22	NW
19	20190221	Sunny	Light	Mid-Ebb	M	5.3	12:41	11.53	8.98	33	22.6	2.54	4	113	0.32	NW
I9	20190221	Sunny	Light	Mid-Ebb	M	5.3	12:41	11.53	9.04	32.39	22.8	2.51	4	113	0.33	NW
19	20190221	Sunny	Light	Mid-Ebb	S	1	12:42	11.45	9.01	32.26	23.2	2.27	4	113	0.41	NW
19	20190221	Sunny	Light	Mid-Ebb	S	1	12:42	11.29	9	30.4	22.5	2.31	3	112	0.4	NW
I10	20190221	Sunny	Light	Mid-Ebb	В	8.7	12:35	11.41	8.99	29.43	22.6	3.42	6	113	0.27	NW
I10	20190221	Sunny	Light	Mid-Ebb	В	8.7	12:35	11.58	9.03	32.01	22.8	3.46	7	113	0.29	NW
I10	20190221	Sunny	Light	Mid-Ebb	M	4.9	12:36	11.79	8.98	31.65	23.2	2.79	4	113	0.36	NW
I10	20190221	Sunny	Light	Mid-Ebb	M	4.9	12:36	11.95	9.05	31.53	22.6	2.75	4	113	0.36	NW
I10	20190221	Sunny	Light	Mid-Ebb	S	1	12:37	11.8	9.07	32.79	23	2.25	5	112	0.48	NW
I10	20190221	Sunny	Light	Mid-Ebb	S	1	12:37	11.93	9.01	29.58	22.5	2.33	4	113	0.46	NW
UC1	20190222	Cloudy	Light	Mid-Flood	В	10.4	8:58	12.96	8.97	29.28	21.2	4.88	<2	113	0.28	NW
UC1	20190222	Cloudy	Light	Mid-Flood	В	10.4	8:58	12.92	8.83	30.13	20.6	4.87	<2	113	0.28	NW
UC1	20190222	Cloudy	Light	Mid-Flood	M	5.7	8:59	13.09	8.89	31.6	20.9	4.11	<2	112	0.31	NW
UC1	20190222	Cloudy	Light	Mid-Flood	M	5.7	8:59	13.15	8.97	31.11	20.7	4.06	<2	114	0.31	NW
UC1	20190222	Cloudy	Light	Mid-Flood	S	1	9:00	13.07	8.85	31.55	20.8	3.57	3	113	0.42	NW
UC1	20190222	Cloudy	Light	Mid-Flood	S	1	9:00	13.24	8.89	31.83	21.1	3.55	3	113	0.4	NW
UC2	20190222	Cloudy	Light	Mid-Flood	В	9.9	9:03	12.1	8.97	31.54	21.1	4.5	<2	113	0.22	NW
UC2	20190222	Cloudy	Light	Mid-Flood	В	9.9	9:03	12.12	8.93	30.8	21.1	4.49	<2	112	0.24	NW
UC2	20190222	Cloudy	Light	Mid-Flood	M	5.5	9:04	12.31	8.89	31.36	21.2	4.15	<2	112	0.32	NW
UC2	20190222	Cloudy	Light	Mid-Flood	M	5.5	9:04	12.41	8.97	29.15	20.9	4.13	<2	113	0.34	NW
UC2	20190222	Cloudy	Light	Mid-Flood	S	1	9:05	12.35	8.89	29.85	20.9	3.68	<2	113	0.44	NW
UC2	20190222	Cloudy	Light	Mid-Flood	S	1	9:05	12.29	8.93	30.16	21	3.74	2	112	0.43	NW
I1	20190222	Cloudy	Light	Mid-Flood	В	10.9	9:09	12.92	8.9	30.79	20.7	4.58	4	113	0.23	NW
I1	20190222	Cloudy	Light	Mid-Flood	В	10.9	9:09	12.73	8.87	30.11	20.9	4.65	3	112	0.21	NW
I1	20190222	Cloudy	Light	Mid-Flood	M	6	9:10	12.65	8.89	29.23	20.7	4.23	2	112	0.31	NW
I1	20190222	Cloudy	Light	Mid-Flood	M	6	9:10	12.69	8.95	30.5	20.6	4.15	3	112	0.33	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190222	Cloudy	Light	Mid-Flood	S	1	9:11	12.89	8.89	29.93	21.2	3.87	<2	113	0.44	NW
I1	20190222	Cloudy	Light	Mid-Flood	S	1	9:11	13.08	8.87	31.95	20.7	3.93	2	113	0.42	NW
I2	20190222	Cloudy	Light	Mid-Flood	В	10.2	9:13	12.2	8.85	32.86	21.2	4.91	2	114	0.29	NW
I2	20190222	Cloudy	Light	Mid-Flood	В	10.2	9:13	12.29	8.94	29.42	20.6	4.92	<2	112	0.29	NW
I2	20190222	Cloudy	Light	Mid-Flood	M	5.6	9:14	12.12	8.95	32.74	21.2	4.18	<2	112	0.35	NW
12	20190222	Cloudy	Light	Mid-Flood	M	5.6	9:14	12.32	8.89	32.03	20.7	4.18	2	114	0.35	NW
12	20190222	Cloudy	Light	Mid-Flood	S	1	9:15	12.43	8.83	31.92	21	3.67	<2	112	0.5	NW
I2	20190222	Cloudy	Light	Mid-Flood	S	1	9:15	12.26	8.87	29.31	20.7	3.57	<2	113	0.52	NW
I3	20190222	Cloudy	Light	Mid-Flood	В	10.5	9:17	12.01	8.91	30.3	21.1	4.68	5	111	0.2	NW
13	20190222	Cloudy	Light	Mid-Flood	В	10.5	9:17	12.21	8.96	30.14	20.9	4.62	4	112	0.2	NW
13	20190222	Cloudy	Light	Mid-Flood	M	5.8	9:18	12.15	8.9	31.28	20.8	4.28	5	112	0.32	NW
I3	20190222	Cloudy	Light	Mid-Flood	M	5.8	9:18	12.19	8.88	32.84	20.6	4.22	6	112	0.33	NW
I3	20190222	Cloudy	Light	Mid-Flood	S	1	9:19	12.3	8.83	30.14	20.6	3.98	<2	113	0.47	NW
13	20190222	Cloudy	Light	Mid-Flood	S	1	9:19	12.39	8.97	32.84	20.6	3.89	3	113	0.46	NW
I4	20190222	Cloudy	Light	Mid-Flood	В	9	9:21	12.99	8.88	32.68	20.6	4.54	2	112	0.21	NW
I4	20190222	Cloudy	Light	Mid-Flood	В	9	9:21	13.13	8.84	29.51	21	4.49	3	113	0.22	NW
I4	20190222	Cloudy	Light	Mid-Flood	M	5	9:22	12.99	8.9	29.79	21.1	4.18	4	113	0.32	NW
I4	20190222	Cloudy	Light	Mid-Flood	M	5	9:22	12.99	8.95	29.61	21	4.22	4	112	0.31	NW
I4	20190222	Cloudy	Light	Mid-Flood	S	1	9:23	12.96	8.91	32.23	20.6	3.69	3	112	0.43	NW
I4	20190222	Cloudy	Light	Mid-Flood	S	1	9:23	12.99	8.83	29.65	21	3.77	2	112	0.44	NW
I5	20190222	Cloudy	Light	Mid-Flood	В	9.9	9:25	12.76	8.82	32.13	20.8	4.9	<2	113	0.28	NW
I5	20190222	Cloudy	Light	Mid-Flood	В	9.9	9:25	12.7	8.95	30.52	21	4.86	<2	112	0.26	NW
I5	20190222	Cloudy	Light	Mid-Flood	M	5.5	9:26	12.59	8.83	30.32	21	4.22	3	112	0.3	NW
I5	20190222	Cloudy	Light	Mid-Flood	M	5.5	9:26	12.44	8.96	31.98	20.8	4.23	3	113	0.31	NW
I5	20190222	Cloudy	Light	Mid-Flood	S	1	9:27	12.47	8.93	32.68	20.7	3.57	2	113	0.46	NW
I5	20190222	Cloudy	Light	Mid-Flood	S	1	9:27	12.64	8.86	30.28	20.8	3.65	2	112	0.46	NW
I6	20190222	Cloudy	Light	Mid-Flood	В	9.2	9:52	12.27	8.92	29.77	21.2	4.73	4	111	0.3	NW
I6	20190222	Cloudy	Light	Mid-Flood	В	9.2	9:52	12.29	8.97	30.45	20.7	4.71	3	112	0.3	NW
I6	20190222	Cloudy	Light	Mid-Flood	M	5.1	9:53	12.49	8.89	30.14	21	4.15	2	112	0.32	NW
I6	20190222	Cloudy	Light	Mid-Flood	M	5.1	9:53	12.42	8.95	32.54	21.1	4.17	<2	113	0.34	NW
I6	20190222	Cloudy	Light	Mid-Flood	S	1	9:54	12.46	8.89	29.93	20.7	3.99	<2	113	0.5	NW
I6	20190222	Cloudy	Light	Mid-Flood	S	1	9:54	12.26	8.97	30.03	20.8	4.01	2	112	0.5	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I7	20190222	Cloudy	Light	Mid-Flood	В	10.8	9:47	12.46	8.96	32.26	20.6	4.86	2	113	0.27	NW
I7	20190222	Cloudy	Light	Mid-Flood	В	10.8	9:47	12.54	8.88	32.1	20.8	4.9	<2	112	0.25	NW
I7	20190222	Cloudy	Light	Mid-Flood	M	5.9	9:48	12.5	8.89	31.59	20.8	4.26	3	112	0.4	NW
I7	20190222	Cloudy	Light	Mid-Flood	M	5.9	9:48	12.62	8.87	32.82	20.8	4.34	3	112	0.39	NW
I7	20190222	Cloudy	Light	Mid-Flood	S	1	9:49	12.73	8.9	30.2	20.6	3.76	3	112	0.42	NW
I7	20190222	Cloudy	Light	Mid-Flood	S	1	9:49	12.79	8.88	31.77	20.9	3.81	2	114	0.42	NW
18	20190222	Cloudy	Light	Mid-Flood	В	9	9:42	12.61	8.89	32.65	21	4.63	2	113	0.22	NW
I8	20190222	Cloudy	Light	Mid-Flood	В	9	9:42	12.41	8.83	32.21	20.8	4.73	<2	112	0.24	NW
I8	20190222	Cloudy	Light	Mid-Flood	M	5	9:43	12.5	8.97	31.79	20.8	4.45	3	114	0.36	NW
I8	20190222	Cloudy	Light	Mid-Flood	M	5	9:43	12.66	8.97	31.39	20.7	4.5	3	113	0.38	NW
I8	20190222	Cloudy	Light	Mid-Flood	S	1	9:44	12.59	8.88	32.54	21.2	3.8	2	112	0.45	NW
18	20190222	Cloudy	Light	Mid-Flood	S	1	9:44	12.76	8.92	29.99	21	3.77	3	113	0.43	NW
I9	20190222	Cloudy	Light	Mid-Flood	В	10.1	9:37	12.56	8.82	30.56	21.2	4.52	<2	112	0.21	NW
I9	20190222	Cloudy	Light	Mid-Flood	В	10.1	9:37	12.69	8.9	30.66	20.6	4.47	<2	112	0.19	NW
I9	20190222	Cloudy	Light	Mid-Flood	M	5.6	9:38	12.69	8.88	32.9	20.8	4.47	3	112	0.36	NW
19	20190222	Cloudy	Light	Mid-Flood	M	5.6	9:38	12.69	8.95	29.11	20.6	4.43	2	112	0.35	NW
I9	20190222	Cloudy	Light	Mid-Flood	S	1	9:39	12.79	8.85	31.64	21	3.69	<2	112	0.47	NW
I9	20190222	Cloudy	Light	Mid-Flood	S	1	9:39	12.97	8.91	29.91	20.8	3.59	2	112	0.45	NW
I10	20190222	Cloudy	Light	Mid-Flood	В	9.9	9:30	12.21	8.94	30.9	20.6	4.58	2	112	0.2	NW
I10	20190222	Cloudy	Light	Mid-Flood	В	9.9	9:30	12.07	8.9	30.32	20.8	4.55	2	112	0.2	NW
I10	20190222	Cloudy	Light	Mid-Flood	M	5.5	9:31	11.87	8.94	29.11	21.2	4.31	2	112	0.35	NW
I10	20190222	Cloudy	Light	Mid-Flood	M	5.5	9:31	11.99	8.88	30.84	20.6	4.23	2	112	0.34	NW
I10	20190222	Cloudy	Light	Mid-Flood	S	1	9:32	11.85	8.92	30.6	21.1	3.52	<2	112	0.45	NW
I10	20190222	Cloudy	Light	Mid-Flood	S	1	9:32	11.89	8.83	31.34	21	3.47	<2	112	0.44	NW
UC1	20190222	Cloudy	Light	Mid-Ebb	В	8.8	13:42	12.53	8.84	31.77	20.6	4.93	2	113	0.25	SE
UC1	20190222	Cloudy	Light	Mid-Ebb	В	8.8	13:42	12.52	8.83	31.75	21.1	4.88	<2	113	0.23	SE
UC1	20190222	Cloudy	Light	Mid-Ebb	M	4.9	13:43	12.55	8.84	32.7	21.2	4.48	3	114	0.36	SE
UC1	20190222	Cloudy	Light	Mid-Ebb	M	4.9	13:43	12.52	8.82	31.54	21	4.42	2	114	0.38	SE
UC1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:44	12.45	8.94	32.61	21	3.55	2	114	0.47	SE
UC1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:44	12.36	8.94	30.06	21.1	3.65	3	114	0.49	SE
UC2	20190222	Cloudy	Light	Mid-Ebb	В	9.1	13:49	12.82	8.92	30.9	20.6	4.55	<2	114	0.3	SE
UC2	20190222	Cloudy	Light	Mid-Ebb	В	9.1	13:49	12.87	8.94	32.18	21.1	4.62	<2	114	0.3	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190222	Cloudy	Light	Mid-Ebb	M	5.1	13:50	12.86	8.91	31.19	21.1	4.43	<2	113	0.4	SE
UC2	20190222	Cloudy	Light	Mid-Ebb	M	5.1	13:50	13.04	8.87	29.84	21.2	4.48	2	114	0.38	SE
UC2	20190222	Cloudy	Light	Mid-Ebb	S	1	13:51	12.86	8.86	30.94	20.8	3.72	3	113	0.4	SE
UC2	20190222	Cloudy	Light	Mid-Ebb	S	1	13:51	12.9	8.84	32.5	21.1	3.68	<2	113	0.41	SE
I1	20190222	Cloudy	Light	Mid-Ebb	В	9.6	13:55	12.65	8.92	32.74	21.1	4.51	2	113	0.29	SE
I1	20190222	Cloudy	Light	Mid-Ebb	В	9.6	13:55	12.84	8.97	29.95	20.6	4.58	3	113	0.3	SE
I1	20190222	Cloudy	Light	Mid-Ebb	M	5.3	13:56	12.78	8.82	31.86	20.6	4.46	2	112	0.37	SE
I1	20190222	Cloudy	Light	Mid-Ebb	M	5.3	13:56	12.68	8.88	30.5	20.8	4.43	<2	114	0.35	SE
I1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:57	12.67	8.84	30.68	21.2	3.89	<2	112	0.48	SE
I1	20190222	Cloudy	Light	Mid-Ebb	S	1	13:57	12.82	8.87	29.41	21	3.81	2	114	0.49	SE
I2	20190222	Cloudy	Light	Mid-Ebb	В	8.8	14:01	12.03	8.89	29.21	21	4.61	3	112	0.29	SE
I2	20190222	Cloudy	Light	Mid-Ebb	В	8.8	14:01	12.05	8.88	32.52	20.7	4.63	2	114	0.3	SE
I2	20190222	Cloudy	Light	Mid-Ebb	M	4.9	14:02	11.94	8.87	29.47	20.9	4.33	<2	113	0.39	SE
I2	20190222	Cloudy	Light	Mid-Ebb	M	4.9	14:02	12.11	8.82	30.6	20.6	4.29	<2	112	0.41	SE
I2	20190222	Cloudy	Light	Mid-Ebb	S	1	14:03	11.92	8.93	29.52	20.7	3.76	<2	112	0.49	SE
I2	20190222	Cloudy	Light	Mid-Ebb	S	1	14:03	12.1	8.91	32.87	21	3.77	2	113	0.5	SE
I3	20190222	Cloudy	Light	Mid-Ebb	В	10.2	14:07	12.44	8.84	32.47	20.9	4.73	3	113	0.2	SE
I3	20190222	Cloudy	Light	Mid-Ebb	В	10.2	14:07	12.25	8.89	31.42	21	4.81	<2	113	0.19	SE
I3	20190222	Cloudy	Light	Mid-Ebb	M	5.6	14:08	12.08	8.97	30.85	21	4.06	2	112	0.36	SE
I3	20190222	Cloudy	Light	Mid-Ebb	M	5.6	14:08	12.07	8.96	30.8	20.9	3.96	3	113	0.35	SE
I3	20190222	Cloudy	Light	Mid-Ebb	S	1	14:09	12.11	8.88	30.61	21.1	3.55	<2	114	0.4	SE
13	20190222	Cloudy	Light	Mid-Ebb	S	1	14:09	12.18	8.93	30.27	20.7	3.6	<2	113	0.4	SE
I4	20190222	Cloudy	Light	Mid-Ebb	В	8.7	14:13	12.34	8.85	29.74	20.7	4.76	<2	113	0.21	SE
I4	20190222	Cloudy	Light	Mid-Ebb	В	8.7	14:13	12.52	8.88	32.26	20.6	4.73	3	114	0.19	SE
I 4	20190222	Cloudy	Light	Mid-Ebb	M	4.9	14:14	12.63	8.92	32.71	20.8	4.14	<2	113	0.31	SE
I 4	20190222	Cloudy	Light	Mid-Ebb	M	4.9	14:14	12.7	8.9	29.19	20.9	4.09	<2	113	0.3	SE
I4	20190222	Cloudy	Light	Mid-Ebb	S	1	14:15	12.82	8.87	29.48	21.1	3.63	<2	113	0.45	SE
I4	20190222	Cloudy	Light	Mid-Ebb	S	1	14:15	12.76	8.83	30.18	20.9	3.55	<2	113	0.45	SE
I5	20190222	Cloudy	Light	Mid-Ebb	В	10	14:19	12.74	8.95	29.58	20.6	4.6	3	113	0.23	SE
I5	20190222	Cloudy	Light	Mid-Ebb	В	10	14:19	12.8	8.82	32.21	20.8	4.51	2	114	0.25	SE
I5	20190222	Cloudy	Light	Mid-Ebb	M	5.5	14:20	12.98	8.91	32.79	20.7	4.07	<2	114	0.37	SE
I5	20190222	Cloudy	Light	Mid-Ebb	M	5.5	14:20	12.89	8.96	32.52	21.1	3.98	2	114	0.39	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190222	Cloudy	Light	Mid-Ebb	S	1	14:21	13.05	8.85	29.28	20.6	3.95	<2	113	0.43	SE
I5	20190222	Cloudy	Light	Mid-Ebb	S	1	14:21	13.08	8.91	31.4	21.1	3.88	2	114	0.42	SE
I6	20190222	Cloudy	Light	Mid-Ebb	В	9.2	14:57	12.65	8.91	30.01	20.7	4.96	2	112	0.26	SE
I6	20190222	Cloudy	Light	Mid-Ebb	В	9.2	14:57	12.63	8.85	31.36	20.8	4.95	3	114	0.25	SE
I6	20190222	Cloudy	Light	Mid-Ebb	M	5.1	14:58	12.8	8.85	32.72	20.9	4.11	<2	114	0.3	SE
I6	20190222	Cloudy	Light	Mid-Ebb	M	5.1	14:58	12.98	8.82	29.2	20.7	4.21	3	113	0.29	SE
I6	20190222	Cloudy	Light	Mid-Ebb	S	1	14:59	13.15	8.95	29.96	20.8	3.97	3	113	0.43	SE
I6	20190222	Cloudy	Light	Mid-Ebb	S	1	14:59	13.31	8.94	32.85	20.7	4.04	3	113	0.43	SE
I7	20190222	Cloudy	Light	Mid-Ebb	В	8.7	14:48	12.25	8.97	29.93	21.2	4.82	<2	114	0.29	SE
I7	20190222	Cloudy	Light	Mid-Ebb	В	8.7	14:48	12.08	8.9	29.34	20.7	4.72	<2	113	0.27	SE
I7	20190222	Cloudy	Light	Mid-Ebb	M	4.9	14:49	11.98	8.92	30.2	21	4.21	<2	113	0.35	SE
I7	20190222	Cloudy	Light	Mid-Ebb	M	4.9	14:49	11.98	8.87	29.72	20.6	4.28	<2	114	0.36	SE
I7	20190222	Cloudy	Light	Mid-Ebb	S	1	14:50	11.96	8.96	30.3	21	3.98	<2	114	0.48	SE
I7	20190222	Cloudy	Light	Mid-Ebb	S	1	14:50	11.93	8.83	30.46	21	4.03	<2	112	0.47	SE
I8	20190222	Cloudy	Light	Mid-Ebb	В	10.1	14:40	12.2	8.93	29.27	20.7	4.58	2	113	0.27	SE
I8	20190222	Cloudy	Light	Mid-Ebb	В	10.1	14:40	12.28	8.94	32.87	20.9	4.63	<2	113	0.26	SE
I8	20190222	Cloudy	Light	Mid-Ebb	M	5.6	14:41	12.23	8.82	30.49	20.6	4.08	<2	113	0.37	SE
I8	20190222	Cloudy	Light	Mid-Ebb	M	5.6	14:41	12.18	8.84	31.15	21.2	4.11	<2	113	0.37	SE
I8	20190222	Cloudy	Light	Mid-Ebb	S	1	14:42	12.34	8.89	31.31	20.9	3.7	<2	113	0.45	SE
I8	20190222	Cloudy	Light	Mid-Ebb	S	1	14:42	12.22	8.94	29.43	21.2	3.71	<2	113	0.43	SE
I9	20190222	Cloudy	Light	Mid-Ebb	В	9.4	14:33	12.86	8.97	31.51	21.2	4.57	3	114	0.25	SE
I9	20190222	Cloudy	Light	Mid-Ebb	В	9.4	14:33	12.83	8.86	29.38	20.6	4.48	3	113	0.26	SE
I9	20190222	Cloudy	Light	Mid-Ebb	M	5.2	14:34	12.88	8.88	31.97	20.6	4.21	2	113	0.39	SE
I9	20190222	Cloudy	Light	Mid-Ebb	M	5.2	14:34	12.93	8.83	32.28	21.1	4.15	<2	113	0.38	SE
I9	20190222	Cloudy	Light	Mid-Ebb	S	1	14:35	12.89	8.9	31.52	20.7	3.98	<2	114	0.47	SE
I9	20190222	Cloudy	Light	Mid-Ebb	S	1	14:35	12.91	8.97	29.85	21	3.93	2	113	0.46	SE
I10	20190222	Cloudy	Light	Mid-Ebb	В	8.9	14:25	12.69	8.9	30.79	20.6	4.93	<2	113	0.25	SE
I10	20190222	Cloudy	Light	Mid-Ebb	В	8.9	14:25	12.49	8.9	30.23	20.7	4.95	2	113	0.25	SE
I10	20190222	Cloudy	Light	Mid-Ebb	M	5	14:26	12.36	8.88	32.48	21.1	4	2	113	0.38	SE
I10	20190222	Cloudy	Light	Mid-Ebb	M	5	14:26	12.31	8.93	32.12	20.6	4.1	2	112	0.37	SE
I10	20190222	Cloudy	Light	Mid-Ebb	S	1	14:27	12.13	8.85	29.45	20.7	3.89	2	114	0.43	SE
I10	20190222	Cloudy	Light	Mid-Ebb	S	1	14:27	12.26	8.9	31.47	20.8	3.97	<2	113	0.42	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190223	Cloudy	Light	Mid-Flood	В	10.7	9:36	9.88	8.67	30.37	19.3	3.57	3	113	0.22	NW
UC1	20190223	Cloudy	Light	Mid-Flood	В	10.7	9:36	10.03	8.61	30.74	19.5	3.47	4	112	0.24	NW
UC1	20190223	Cloudy	Light	Mid-Flood	M	5.9	9:37	10.05	8.63	31.11	19.9	3.5	2	112	0.33	NW
UC1	20190223	Cloudy	Light	Mid-Flood	M	5.9	9:37	10.24	8.59	31.7	20	3.53	2	112	0.34	NW
UC1	20190223	Cloudy	Light	Mid-Flood	S	1	9:38	10.08	8.63	30.05	19.8	2.7	2	113	0.35	NW
UC1	20190223	Cloudy	Light	Mid-Flood	S	1	9:38	10.11	8.58	30.51	19.8	2.69	2	112	0.33	NW
UC2	20190223	Cloudy	Light	Mid-Flood	В	8.9	9:43	9.06	8.59	30.48	19.3	3.7	5	113	0.2	NW
UC2	20190223	Cloudy	Light	Mid-Flood	В	8.9	9:43	9.2	8.67	31.04	19.3	3.79	5	112	0.21	NW
UC2	20190223	Cloudy	Light	Mid-Flood	M	5	9:44	9.32	8.66	30.85	20.1	3.07	6	112	0.25	NW
UC2	20190223	Cloudy	Light	Mid-Flood	M	5	9:44	9.13	8.65	30.05	19.5	3.03	6	113	0.26	NW
UC2	20190223	Cloudy	Light	Mid-Flood	S	1	9:45	9.11	8.67	30.96	19.4	2.5	6	113	0.45	NW
UC2	20190223	Cloudy	Light	Mid-Flood	S	1	9:45	8.94	8.6	32.06	19.6	2.41	6	112	0.44	NW
I1	20190223	Cloudy	Light	Mid-Flood	В	8.8	9:50	9.5	8.58	31.95	19.8	3.84	4	112	0.22	NW
I1	20190223	Cloudy	Light	Mid-Flood	В	8.8	9:50	9.44	8.61	30.9	19.4	3.77	5	112	0.23	NW
I1	20190223	Cloudy	Light	Mid-Flood	M	4.9	9:51	9.25	8.66	30.36	19.5	3.28	4	113	0.35	NW
I1	20190223	Cloudy	Light	Mid-Flood	M	4.9	9:51	9.37	8.59	30.86	19.2	3.3	3	113	0.35	NW
I1	20190223	Cloudy	Light	Mid-Flood	S	1	9:52	9.28	8.67	32.1	19.8	2.82	4	112	0.35	NW
I1	20190223	Cloudy	Light	Mid-Flood	S	1	9:52	9.41	8.63	30.24	20.1	2.78	4	113	0.33	NW
I2	20190223	Cloudy	Light	Mid-Flood	В	9.2	9:57	9.02	8.64	31.63	19.6	3.57	2	112	0.19	NW
I2	20190223	Cloudy	Light	Mid-Flood	В	9.2	9:57	8.88	8.66	31.27	19.5	3.58	4	111	0.21	NW
I2	20190223	Cloudy	Light	Mid-Flood	M	5.1	9:58	9.07	8.6	30.92	20.2	3.38	3	112	0.32	NW
I2	20190223	Cloudy	Light	Mid-Flood	M	5.1	9:58	8.98	8.6	30.44	19.4	3.47	4	112	0.34	NW
I2	20190223	Cloudy	Light	Mid-Flood	S	1	9:59	9.16	8.58	30.09	19.2	2.79	4	112	0.35	NW
I2	20190223	Cloudy	Light	Mid-Flood	S	1	9:59	9.25	8.63	30.28	20.1	2.84	3	112	0.33	NW
I3	20190223	Cloudy	Light	Mid-Flood	В	8.8	10:04	9.51	8.6	31.61	19.7	3.52	5	112	0.21	NW
I3	20190223	Cloudy	Light	Mid-Flood	В	8.8	10:04	9.71	8.64	31.22	19.5	3.53	4	112	0.19	NW
I3	20190223	Cloudy	Light	Mid-Flood	M	4.9	10:05	9.57	8.61	31.37	20	3.05	3	112	0.27	NW
I3	20190223	Cloudy	Light	Mid-Flood	M	4.9	10:05	9.73	8.62	31.7	19.3	3.07	4	112	0.29	NW
I3	20190223	Cloudy	Light	Mid-Flood	S	1	10:06	9.64	8.61	31.71	19.3	2.79	5	112	0.43	NW
I3	20190223	Cloudy	Light	Mid-Flood	S	1	10:06	9.45	8.64	30.71	19.7	2.73	5	112	0.45	NW
I4	20190223	Cloudy	Light	Mid-Flood	В	10.4	10:11	9.04	8.67	31.6	20.1	3.98	4	112	0.18	NW
I4	20190223	Cloudy	Light	Mid-Flood	В	10.4	10:11	8.98	8.67	31.22	19.7	4.05	3	112	0.18	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I4	20190223	Cloudy	Light	Mid-Flood	M	5.7	10:12	8.86	8.67	30.16	19.4	3.48	4	112	0.28	NW
I4	20190223	Cloudy	Light	Mid-Flood	M	5.7	10:12	8.78	8.64	30.15	20	3.38	4	112	0.3	NW
I4	20190223	Cloudy	Light	Mid-Flood	S	1	10:13	8.72	8.63	32.08	20.1	3	4	112	0.39	NW
I4	20190223	Cloudy	Light	Mid-Flood	S	1	10:13	8.64	8.63	31.12	19.7	2.93	4	112	0.38	NW
I5	20190223	Cloudy	Light	Mid-Flood	В	9.7	10:18	9.21	8.63	31.95	19.5	3.98	3	113	0.17	NW
I5	20190223	Cloudy	Light	Mid-Flood	В	9.7	10:18	9.1	8.61	30.83	19.9	3.89	4	112	0.17	NW
I5	20190223	Cloudy	Light	Mid-Flood	M	5.4	10:19	9.16	8.65	31.98	19.3	3.27	4	112	0.33	NW
I5	20190223	Cloudy	Light	Mid-Flood	M	5.4	10:19	9.11	8.63	32.03	19.6	3.31	4	112	0.34	NW
I5	20190223	Cloudy	Light	Mid-Flood	S	1	10:20	9.04	8.67	31.76	19.3	2.72	4	112	0.43	NW
I5	20190223	Cloudy	Light	Mid-Flood	S	1	10:20	8.98	8.59	30.71	19.2	2.77	5	112	0.41	NW
I6	20190223	Cloudy	Light	Mid-Flood	В	10	10:57	9.85	8.62	31.04	19.3	3.66	4	112	0.17	NW
I6	20190223	Cloudy	Light	Mid-Flood	В	10	10:57	9.77	8.59	30.57	19.4	3.66	5	112	0.18	NW
I6	20190223	Cloudy	Light	Mid-Flood	M	5.5	10:58	9.74	8.65	31.23	20.1	3.04	3	112	0.34	NW
I6	20190223	Cloudy	Light	Mid-Flood	M	5.5	10:58	9.72	8.67	30.95	20.2	3.03	4	112	0.34	NW
I6	20190223	Cloudy	Light	Mid-Flood	S	1	10:59	9.61	8.64	30.55	19.6	2.54	3	113	0.36	NW
I6	20190223	Cloudy	Light	Mid-Flood	S	1	10:59	9.7	8.6	32.08	19.8	2.51	4	112	0.34	NW
I7	20190223	Cloudy	Light	Mid-Flood	В	9.8	10:50	9.04	8.62	30.79	19.2	4	5	112	0.19	NW
I7	20190223	Cloudy	Light	Mid-Flood	В	9.8	10:50	9.22	8.62	31.55	19.2	3.93	5	112	0.21	NW
I7	20190223	Cloudy	Light	Mid-Flood	M	5.4	10:51	9.17	8.58	30.92	19.9	3.34	3	113	0.28	NW
I7	20190223	Cloudy	Light	Mid-Flood	M	5.4	10:51	8.99	8.58	30.51	19.5	3.31	4	111	0.3	NW
I7	20190223	Cloudy	Light	Mid-Flood	S	1	10:52	8.94	8.59	30.03	19.2	2.7	5	112	0.4	NW
I7	20190223	Cloudy	Light	Mid-Flood	S	1	10:52	8.81	8.62	30.64	19.7	2.65	4	112	0.39	NW
18	20190223	Cloudy	Light	Mid-Flood	В	9.4	10:39	9.93	8.62	31.58	19.6	3.83	4	112	0.18	NW
18	20190223	Cloudy	Light	Mid-Flood	В	9.4	10:39	9.78	8.6	31.48	19.9	3.8	5	111	0.17	NW
18	20190223	Cloudy	Light	Mid-Flood	M	5.2	10:40	9.63	8.63	30.1	19.7	3.07	5	113	0.34	NW
18	20190223	Cloudy	Light	Mid-Flood	M	5.2	10:40	9.65	8.61	31.08	19.8	3.17	4	111	0.33	NW
18	20190223	Cloudy	Light	Mid-Flood	S	1	10:41	9.76	8.6	31.93	19.7	2.52	4	112	0.37	NW
18	20190223	Cloudy	Light	Mid-Flood	S	1	10:41	9.84	8.67	30.15	19.2	2.58	4	112	0.38	NW
I9	20190223	Cloudy	Light	Mid-Flood	В	8.9	10:32	9.8	8.63	30.99	19.4	3.92	4	112	0.16	NW
I9	20190223	Cloudy	Light	Mid-Flood	В	8.9	10:32	9.75	8.62	30.8	19.8	3.87	4	112	0.14	NW
I9	20190223	Cloudy	Light	Mid-Flood	M	5	10:33	9.64	8.64	31.33	19.8	3.33	5	112	0.27	NW
19	20190223	Cloudy	Light	Mid-Flood	M	5	10:33	9.58	8.66	30.02	20.2	3.34	4	113	0.28	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
19	20190223	Cloudy	Light	Mid-Flood	S	1	10:34	9.49	8.67	31.47	19.5	2.65	4	112	0.42	NW
I 9	20190223	Cloudy	Light	Mid-Flood	S	1	10:34	9.34	8.59	31.65	20.1	2.61	5	112	0.41	NW
I10	20190223	Cloudy	Light	Mid-Flood	В	9.7	10:25	9.11	8.6	31.68	19.7	3.84	3	112	0.19	NW
I10	20190223	Cloudy	Light	Mid-Flood	В	9.7	10:25	9.24	8.6	30.08	20.1	3.92	4	113	0.2	NW
I10	20190223	Cloudy	Light	Mid-Flood	M	5.4	10:26	9.2	8.61	31.03	20.2	3.07	4	113	0.33	NW
I10	20190223	Cloudy	Light	Mid-Flood	M	5.4	10:26	9.26	8.63	30.78	20.1	3.16	3	113	0.31	NW
I10	20190223	Cloudy	Light	Mid-Flood	S	1	10:27	9.43	8.58	30.67	19.2	2.57	3	112	0.44	NW
I10	20190223	Cloudy	Light	Mid-Flood	S	1	10:27	9.51	8.59	30.13	19.6	2.56	3	112	0.43	NW
UC1	20190223	Cloudy	Light	Mid-Ebb	В	9.8	13:25	9.23	8.6	30.61	20.2	3.69	4	111	0.22	SE
UC1	20190223	Cloudy	Light	Mid-Ebb	В	9.8	13:25	9.32	8.67	31.41	19.8	3.76	3	112	0.2	SE
UC1	20190223	Cloudy	Light	Mid-Ebb	M	5.4	13:26	9.49	8.61	31.88	19.8	3.04	4	113	0.35	SE
UC1	20190223	Cloudy	Light	Mid-Ebb	M	5.4	13:26	9.34	8.66	32.04	19.6	3.09	3	111	0.33	SE
UC1	20190223	Cloudy	Light	Mid-Ebb	S	1	13:27	9.21	8.6	31.48	19.8	2.58	4	112	0.43	SE
UC1	20190223	Cloudy	Light	Mid-Ebb	S	1	13:27	9.25	8.65	30.23	20	2.57	3	112	0.45	SE
UC2	20190223	Cloudy	Light	Mid-Ebb	В	10.3	13:31	9.46	8.61	30.87	19.2	3.9	3	112	0.17	SE
UC2	20190223	Cloudy	Light	Mid-Ebb	В	10.3	13:31	9.57	8.65	30.41	19.8	3.89	3	113	0.19	SE
UC2	20190223	Cloudy	Light	Mid-Ebb	M	5.7	13:32	9.46	8.65	31.27	20.2	3.5	4	112	0.3	SE
UC2	20190223	Cloudy	Light	Mid-Ebb	M	5.7	13:32	9.53	8.63	31.26	20	3.45	4	113	0.3	SE
UC2	20190223	Cloudy	Light	Mid-Ebb	S	1	13:33	9.64	8.64	30.38	20.1	2.98	4	112	0.4	SE
UC2	20190223	Cloudy	Light	Mid-Ebb	S	1	13:33	9.8	8.67	31.26	19.2	3.03	4	112	0.39	SE
I1	20190223	Cloudy	Light	Mid-Ebb	В	9.3	13:37	9.53	8.59	31.92	19.9	3.93	4	112	0.25	SE
I1	20190223	Cloudy	Light	Mid-Ebb	В	9.3	13:37	9.34	8.63	30.69	19.9	4.03	3	113	0.24	SE
I1	20190223	Cloudy	Light	Mid-Ebb	M	5.2	13:38	9.19	8.62	30.83	19.4	3.09	3	112	0.29	SE
I1	20190223	Cloudy	Light	Mid-Ebb	M	5.2	13:38	9.16	8.61	30.13	20.1	3.17	3	113	0.28	SE
I1	20190223	Cloudy	Light	Mid-Ebb	S	1	13:39	9.01	8.6	31.33	20.1	2.63	4	113	0.37	SE
I1	20190223	Cloudy	Light	Mid-Ebb	S	1	13:39	9.06	8.58	31.17	19.4	2.57	3	112	0.36	SE
I2	20190223	Cloudy	Light	Mid-Ebb	В	8.4	13:43	9.55	8.65	31.87	19.9	3.85	3	112	0.16	SE
I2	20190223	Cloudy	Light	Mid-Ebb	В	8.4	13:43	9.47	8.64	30.52	19.8	3.94	3	112	0.16	SE
I2	20190223	Cloudy	Light	Mid-Ebb	M	4.7	13:44	9.59	8.65	31.72	19.2	3.09	3	113	0.29	SE
I2	20190223	Cloudy	Light	Mid-Ebb	M	4.7	13:44	9.45	8.64	31.33	19.6	3.19	4	112	0.3	SE
I2	20190223	Cloudy	Light	Mid-Ebb	S	1	13:45	9.65	8.65	31.34	20.1	3	3	112	0.39	SE
I2	20190223	Cloudy	Light	Mid-Ebb	S	1	13:45	9.47	8.67	30.62	19.8	2.95	4	112	0.41	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I3	20190223	Cloudy	Light	Mid-Ebb	В	10	13:50	9.1	8.63	30.39	19.2	3.52	3	112	0.15	SE
I3	20190223	Cloudy	Light	Mid-Ebb	В	10	13:50	8.93	8.67	30.83	19.3	3.58	4	112	0.17	SE
I3	20190223	Cloudy	Light	Mid-Ebb	M	5.5	13:51	8.91	8.59	31.9	19.7	3.39	3	112	0.27	SE
I3	20190223	Cloudy	Light	Mid-Ebb	M	5.5	13:51	9.08	8.61	31.86	19.9	3.42	3	113	0.29	SE
I3	20190223	Cloudy	Light	Mid-Ebb	S	1	13:52	9.23	8.64	30.69	19.2	2.95	4	112	0.39	SE
I3	20190223	Cloudy	Light	Mid-Ebb	S	1	13:52	9.38	8.67	32.02	19.6	2.95	4	112	0.38	SE
I4	20190223	Cloudy	Light	Mid-Ebb	В	9	13:56	9.98	8.65	30.59	20.2	3.55	4	111	0.22	SE
I4	20190223	Cloudy	Light	Mid-Ebb	В	9	13:56	10.07	8.63	30.59	19.2	3.48	3	112	0.23	SE
I4	20190223	Cloudy	Light	Mid-Ebb	M	5	13:57	10.17	8.59	31.11	19.9	3.5	3	112	0.3	SE
I4	20190223	Cloudy	Light	Mid-Ebb	M	5	13:57	10.24	8.67	30.68	19.6	3.54	4	112	0.28	SE
I4	20190223	Cloudy	Light	Mid-Ebb	S	1	13:58	10.33	8.63	31.1	20	2.61	4	112	0.4	SE
I4	20190223	Cloudy	Light	Mid-Ebb	S	1	13:58	10.22	8.58	30.89	20	2.7	4	112	0.4	SE
I5	20190223	Cloudy	Light	Mid-Ebb	В	10	14:02	9.87	8.61	30.3	20.2	3.61	4	112	0.25	SE
I5	20190223	Cloudy	Light	Mid-Ebb	В	10	14:02	9.92	8.67	32.11	19.2	3.57	5	112	0.27	SE
I5	20190223	Cloudy	Light	Mid-Ebb	M	5.5	14:03	9.92	8.6	30.74	19.2	3.17	3	112	0.34	SE
I5	20190223	Cloudy	Light	Mid-Ebb	M	5.5	14:03	9.94	8.58	30.62	20	3.15	4	112	0.33	SE
I5	20190223	Cloudy	Light	Mid-Ebb	S	1	14:04	9.86	8.62	30.73	20.2	2.61	3	112	0.44	SE
I5	20190223	Cloudy	Light	Mid-Ebb	S	1	14:04	9.74	8.59	30.84	19.3	2.55	4	112	0.42	SE
I6	20190223	Cloudy	Light	Mid-Ebb	В	8.6	14:32	9.88	8.63	30.85	19.9	3.64	5	111	0.15	SE
I6	20190223	Cloudy	Light	Mid-Ebb	В	8.6	14:32	9.95	8.62	29.97	20.1	3.67	4	113	0.16	SE
I6	20190223	Cloudy	Light	Mid-Ebb	M	4.8	14:33	9.96	8.58	31.36	20.1	3.37	4	112	0.29	SE
I6	20190223	Cloudy	Light	Mid-Ebb	M	4.8	14:33	9.98	8.61	30.79	19.5	3.37	4	112	0.3	SE
I6	20190223	Cloudy	Light	Mid-Ebb	S	1	14:34	9.96	8.64	30.96	19.4	3	4	112	0.44	SE
I6	20190223	Cloudy	Light	Mid-Ebb	S	1	14:34	9.8	8.67	31.97	19.2	2.93	4	112	0.43	SE
I7	20190223	Cloudy	Light	Mid-Ebb	В	8.5	14:26	9.39	8.59	30.43	19.9	3.87	5	112	0.17	SE
I7	20190223	Cloudy	Light	Mid-Ebb	В	8.5	14:26	9.46	8.65	31.73	19.5	3.92	5	112	0.17	SE
I7	20190223	Cloudy	Light	Mid-Ebb	M	4.8	14:27	9.29	8.61	31.33	19.5	3.04	5	112	0.34	SE
I7	20190223	Cloudy	Light	Mid-Ebb	M	4.8	14:27	9.42	8.66	30.95	20.1	3.03	4	112	0.35	SE
I7	20190223	Cloudy	Light	Mid-Ebb	S	1	14:28	9.48	8.6	32.1	19.7	2.64	4	112	0.41	SE
I7	20190223	Cloudy	Light	Mid-Ebb	S	1	14:28	9.58	8.61	31.91	19.2	2.65	5	112	0.4	SE
18	20190223	Cloudy	Light	Mid-Ebb	В	8.9	14:20	9.22	8.63	30.73	19.5	3.86	3	112	0.24	SE
18	20190223	Cloudy	Light	Mid-Ebb	В	8.9	14:20	9.2	8.65	30.24	19.6	3.87	4	112	0.24	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I8	20190223	Cloudy	Light	Mid-Ebb	M	5	14:21	9.2	8.67	30.01	19.4	3.35	4	112	0.31	SE
18	20190223	Cloudy	Light	Mid-Ebb	M	5	14:21	9.21	8.61	31.38	19.6	3.4	4	113	0.3	SE
I8	20190223	Cloudy	Light	Mid-Ebb	S	1	14:22	9.14	8.61	32.08	19.2	2.79	4	112	0.37	SE
18	20190223	Cloudy	Light	Mid-Ebb	S	1	14:22	9.08	8.61	31.85	19.2	2.81	5	112	0.37	SE
I9	20190223	Cloudy	Light	Mid-Ebb	В	8.5	14:14	9.51	8.64	31.76	19.9	3.62	5	112	0.24	SE
I9	20190223	Cloudy	Light	Mid-Ebb	В	8.5	14:14	9.64	8.65	30.6	20	3.67	5	112	0.25	SE
I9	20190223	Cloudy	Light	Mid-Ebb	M	4.8	14:15	9.74	8.58	30.91	19.8	3.3	4	112	0.27	SE
I9	20190223	Cloudy	Light	Mid-Ebb	M	4.8	14:15	9.57	8.62	31.53	20.2	3.37	4	113	0.27	SE
I9	20190223	Cloudy	Light	Mid-Ebb	S	1	14:16	9.67	8.58	31.92	19.9	2.61	4	113	0.4	SE
I9	20190223	Cloudy	Light	Mid-Ebb	S	1	14:16	9.83	8.67	32.1	19.9	2.68	5	112	0.38	SE
I10	20190223	Cloudy	Light	Mid-Ebb	В	8.9	14:08	9.48	8.64	30.37	19.8	3.67	3	112	0.23	SE
I10	20190223	Cloudy	Light	Mid-Ebb	В	8.9	14:08	9.59	8.63	31.93	20.1	3.76	3	113	0.23	SE
I10	20190223	Cloudy	Light	Mid-Ebb	M	5	14:09	9.45	8.66	30.89	20.1	3.14	3	113	0.25	SE
I10	20190223	Cloudy	Light	Mid-Ebb	M	5	14:09	9.47	8.59	31.63	19.4	3.07	4	112	0.25	SE
I10	20190223	Cloudy	Light	Mid-Ebb	S	1	14:10	9.41	8.67	30.61	20.2	2.91	4	113	0.41	SE
I10	20190223	Cloudy	Light	Mid-Ebb	S	1	14:10	9.54	8.66	30.37	19.8	3.01	4	113	0.43	SE
UC1	20190224	Cloudy	Light	Mid-Flood	В	10.1	9:41	12.52	8.59	31.92	17.5	4.61	6	112	0.33	NW
UC1	20190224	Cloudy	Light	Mid-Flood	В	10.1	9:41	12.41	8.92	30.89	17.4	4.59	6	112	0.33	NW
UC1	20190224	Cloudy	Light	Mid-Flood	M	5.6	9:42	12.46	8.83	32.29	17.8	4.45	4	113	0.4	NW
UC1	20190224	Cloudy	Light	Mid-Flood	M	5.6	9:42	12.32	8.51	31.83	17.5	4.43	5	111	0.41	NW
UC1	20190224	Cloudy	Light	Mid-Flood	S	1	9:43	12.5	8.5	32.76	17.4	3.78	4	113	0.53	NW
UC1	20190224	Cloudy	Light	Mid-Flood	S	1	9:43	12.68	8.71	32.98	17.3	3.72	4	112	0.51	NW
UC2	20190224	Cloudy	Light	Mid-Flood	В	10.5	9:47	12.43	8.86	31.28	17.5	4.84	6	112	0.35	NW
UC2	20190224	Cloudy	Light	Mid-Flood	В	10.5	9:47	12.34	8.94	32.84	17.3	4.79	6	113	0.37	NW
UC2	20190224	Cloudy	Light	Mid-Flood	M	5.8	9:48	12.34	8.86	31.59	17.6	4.1	5	113	0.47	NW
UC2	20190224	Cloudy	Light	Mid-Flood	M	5.8	9:48	12.32	8.7	29.86	17.5	4.12	4	112	0.48	NW
UC2	20190224	Cloudy	Light	Mid-Flood	S	1	9:49	12.25	8.99	31.28	17.5	3.8	4	113	0.55	NW
UC2	20190224	Cloudy	Light	Mid-Flood	S	1	9:49	12.11	8.8	30	17.1	3.82	4	113	0.54	NW
I1	20190224	Cloudy	Light	Mid-Flood	В	10.9	9:53	12.25	8.56	31.03	17.2	4.59	6	112	0.34	NW
I1	20190224	Cloudy	Light	Mid-Flood	В	10.9	9:53	12.08	8.89	30.82	17.4	4.6	6	112	0.33	NW
I1	20190224	Cloudy	Light	Mid-Flood	M	6	9:54	12.19	8.52	30.36	17.6	4.1	4	113	0.41	NW
I1	20190224	Cloudy	Light	Mid-Flood	M	6	9:54	12.12	8.74	31.15	17.5	4.11	5	113	0.39	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190224	Cloudy	Light	Mid-Flood	S	1	9:55	11.98	8.72	31.87	17.6	3.84	4	112	0.53	NW
I1	20190224	Cloudy	Light	Mid-Flood	S	1	9:55	12.15	8.67	31.61	17.5	3.91	4	113	0.55	NW
I2	20190224	Cloudy	Light	Mid-Flood	В	9.9	9:59	12.83	8.61	29.26	17.5	4.97	4	112	0.31	NW
I2	20190224	Cloudy	Light	Mid-Flood	В	9.9	9:59	13.03	8.61	29.5	17.8	5.04	5	112	0.29	NW
I2	20190224	Cloudy	Light	Mid-Flood	M	5.5	10:00	13.08	8.98	30.25	17.6	4.28	4	113	0.46	NW
I2	20190224	Cloudy	Light	Mid-Flood	M	5.5	10:00	12.92	8.87	31.36	17.7	4.26	3	112	0.45	NW
I2	20190224	Cloudy	Light	Mid-Flood	S	1	10:01	12.78	8.8	31.97	17.4	3.57	5	112	0.54	NW
I2	20190224	Cloudy	Light	Mid-Flood	S	1	10:01	12.95	8.9	30.94	17.5	3.66	4	112	0.53	NW
I3	20190224	Cloudy	Light	Mid-Flood	В	10.1	10:05	12	8.78	29.9	17.7	4.69	6	113	0.34	NW
I3	20190224	Cloudy	Light	Mid-Flood	В	10.1	10:05	12.19	8.72	29.75	17.8	4.77	5	113	0.33	NW
I3	20190224	Cloudy	Light	Mid-Flood	M	5.6	10:06	11.99	8.76	32.67	17.1	4.26	4	113	0.46	NW
I3	20190224	Cloudy	Light	Mid-Flood	M	5.6	10:06	12.05	9	30.76	17.8	4.2	3	112	0.45	NW
I3	20190224	Cloudy	Light	Mid-Flood	S	1	10:07	12	8.94	30.43	17.3	3.86	3	113	0.58	NW
I3	20190224	Cloudy	Light	Mid-Flood	S	1	10:07	12.09	8.84	29.09	17.7	3.78	4	113	0.59	NW
I4	20190224	Cloudy	Light	Mid-Flood	В	9.1	10:11	12.72	8.78	32.31	17.4	4.63	8	112	0.32	NW
I4	20190224	Cloudy	Light	Mid-Flood	В	9.1	10:11	12.66	8.66	31.45	17.3	4.55	7	112	0.34	NW
I4	20190224	Cloudy	Light	Mid-Flood	M	5.1	10:12	12.79	8.86	32.41	17.8	4.24	6	112	0.48	NW
I4	20190224	Cloudy	Light	Mid-Flood	M	5.1	10:12	12.81	9	31.73	17.4	4.3	7	114	0.5	NW
I4	20190224	Cloudy	Light	Mid-Flood	S	1	10:13	12.95	8.73	32.3	17.6	3.92	5	113	0.55	NW
I4	20190224	Cloudy	Light	Mid-Flood	S	1	10:13	12.77	8.96	31.64	17.3	3.93	5	114	0.55	NW
I5	20190224	Cloudy	Light	Mid-Flood	В	9.6	10:18	12.21	8.6	29.45	17.1	4.82	4	112	0.35	NW
I5	20190224	Cloudy	Light	Mid-Flood	В	9.6	10:18	12.09	8.57	32.99	17.2	4.82	4	113	0.37	NW
I5	20190224	Cloudy	Light	Mid-Flood	M	5.3	10:19	12.25	8.66	31.25	17.8	4.16	6	114	0.45	NW
I5	20190224	Cloudy	Light	Mid-Flood	M	5.3	10:19	12.16	8.91	29.9	17.4	4.26	6	113	0.46	NW
I5	20190224	Cloudy	Light	Mid-Flood	S	1	10:20	12.05	9	32.58	17.3	3.91	8	113	0.56	NW
I5	20190224	Cloudy	Light	Mid-Flood	S	1	10:20	12.08	8.84	31.07	17.1	3.98	6	114	0.54	NW
I6	20190224	Cloudy	Light	Mid-Flood	В	9.3	10:48	12.51	8.6	31.84	17.6	4.67	7	112	0.4	NW
I6	20190224	Cloudy	Light	Mid-Flood	В	9.3	10:48	12.32	8.8	29.73	17.6	4.61	6	113	0.39	NW
I6	20190224	Cloudy	Light	Mid-Flood	M	5.2	10:49	12.24	8.93	29.97	17.4	4.38	6	112	0.42	NW
I6	20190224	Cloudy	Light	Mid-Flood	M	5.2	10:49	12.1	8.87	32.96	17.7	4.46	5	114	0.41	NW
I6	20190224	Cloudy	Light	Mid-Flood	S	1	10:50	11.94	8.59	30.77	17.7	3.95	5	113	0.52	NW
I6	20190224	Cloudy	Light	Mid-Flood	S	1	10:50	12.1	8.52	30.98	17.7	4.02	4	113	0.53	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I7	20190224	Cloudy	Light	Mid-Flood	В	10	10:42	12.45	8.69	30.55	17.5	4.86	7	114	0.38	NW
I7	20190224	Cloudy	Light	Mid-Flood	В	10	10:42	12.47	8.98	31.12	17.5	4.78	6	113	0.37	NW
I7	20190224	Cloudy	Light	Mid-Flood	M	5.5	10:43	12.66	8.65	32.5	17.5	4.26	7	113	0.46	NW
I7	20190224	Cloudy	Light	Mid-Flood	M	5.5	10:43	12.75	8.82	32.91	17.6	4.34	7	115	0.45	NW
I7	20190224	Cloudy	Light	Mid-Flood	S	1	10:44	12.75	8.7	32.8	17.1	3.65	6	111	0.55	NW
I7	20190224	Cloudy	Light	Mid-Flood	S	1	10:44	12.77	8.91	30.28	17.1	3.63	6	112	0.55	NW
18	20190224	Cloudy	Light	Mid-Flood	В	9	10:36	12.91	8.82	29.5	17.7	4.92	4	114	0.37	NW
I8	20190224	Cloudy	Light	Mid-Flood	В	9	10:36	12.81	8.94	30.12	17.6	4.86	5	113	0.38	NW
18	20190224	Cloudy	Light	Mid-Flood	M	5	10:37	12.76	8.63	31.58	17.3	4.14	5	114	0.48	NW
18	20190224	Cloudy	Light	Mid-Flood	M	5	10:37	12.8	8.52	30.03	17.8	4.19	6	114	0.49	NW
18	20190224	Cloudy	Light	Mid-Flood	S	1	10:38	12.82	8.95	31.84	17.8	3.63	6	114	0.52	NW
18	20190224	Cloudy	Light	Mid-Flood	S	1	10:38	12.74	8.85	32.7	17.2	3.7	6	113	0.53	NW
I9	20190224	Cloudy	Light	Mid-Flood	В	9.2	10:30	12.54	8.64	30.1	17.3	4.88	5	113	0.36	NW
I9	20190224	Cloudy	Light	Mid-Flood	В	9.2	10:30	12.54	8.92	32.4	17.5	4.81	4	113	0.34	NW
I9	20190224	Cloudy	Light	Mid-Flood	M	5.1	10:31	12.48	8.78	29.51	17.8	4.22	4	114	0.44	NW
19	20190224	Cloudy	Light	Mid-Flood	M	5.1	10:31	12.55	8.54	30.76	17.5	4.27	5	112	0.46	NW
I9	20190224	Cloudy	Light	Mid-Flood	S	1	10:32	12.73	8.7	29.51	17.8	3.77	5	113	0.6	NW
I9	20190224	Cloudy	Light	Mid-Flood	S	1	10:32	12.67	8.74	31.31	17.8	3.77	5	114	0.61	NW
I10	20190224	Cloudy	Light	Mid-Flood	В	10.9	10:24	12.66	8.99	31.61	17.4	4.99	5	112	0.34	NW
I10	20190224	Cloudy	Light	Mid-Flood	В	10.9	10:24	12.84	8.82	31.07	17.1	4.9	5	113	0.35	NW
I10	20190224	Cloudy	Light	Mid-Flood	M	6	10:25	13	8.52	32.45	17.7	4.26	4	113	0.44	NW
I10	20190224	Cloudy	Light	Mid-Flood	M	6	10:25	13.02	8.75	31.4	17.3	4.3	5	113	0.46	NW
I10	20190224	Cloudy	Light	Mid-Flood	S	1	10:26	12.85	8.99	31.36	17.1	3.78	3	114	0.59	NW
I10	20190224	Cloudy	Light	Mid-Flood	S	1	10:26	12.87	8.99	30.69	17.2	3.76	4	114	0.57	NW
UC1	20190224	Cloudy	Light	Mid-Ebb	В	8.5	14:12	12.78	8.63	30.13	17.2	4.76	5	114	0.37	SE
UC1	20190224	Cloudy	Light	Mid-Ebb	В	8.5	14:12	12.68	8.81	30.46	17.3	4.77	6	114	0.37	SE
UC1	20190224	Cloudy	Light	Mid-Ebb	M	4.8	14:13	12.54	8.59	29.73	17.7	4.22	5	114	0.48	SE
UC1	20190224	Cloudy	Light	Mid-Ebb	M	4.8	14:13	12.47	8.54	32.32	17.1	4.28	6	114	0.5	SE
UC1	20190224	Cloudy	Light	Mid-Ebb	S	1	14:14	12.67	8.57	30.16	17.6	3.58	6	114	0.56	SE
UC1	20190224	Cloudy	Light	Mid-Ebb	S	1	14:14	12.87	8.81	30.63	17.6	3.63	6	114	0.57	SE
UC2	20190224	Cloudy	Light	Mid-Ebb	В	9.8	14:18	12.78	8.83	29.82	17.7	4.97	4	113	0.36	SE
UC2	20190224	Cloudy	Light	Mid-Ebb	В	9.8	14:18	12.87	8.85	30.86	17.6	4.97	4	113	0.37	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190224	Cloudy	Light	Mid-Ebb	M	5.4	14:19	12.78	8.57	30.49	17.8	4.3	5	113	0.46	SE
UC2	20190224	Cloudy	Light	Mid-Ebb	M	5.4	14:19	12.68	8.78	32.43	17.6	4.35	4	113	0.46	SE
UC2	20190224	Cloudy	Light	Mid-Ebb	S	1	14:20	12.59	8.95	32.17	17.2	3.54	5	113	0.5	SE
UC2	20190224	Cloudy	Light	Mid-Ebb	S	1	14:20	12.72	8.89	32.14	17.6	3.52	5	114	0.52	SE
I1	20190224	Cloudy	Light	Mid-Ebb	В	8.9	14:39	12.82	9	29.47	17.7	4.96	5	112	0.37	SE
I1	20190224	Cloudy	Light	Mid-Ebb	В	8.9	14:39	12.62	8.52	31.86	17.3	5.03	6	114	0.37	SE
I1	20190224	Cloudy	Light	Mid-Ebb	M	5	14:40	12.56	8.61	31.66	17.3	4.18	5	113	0.45	SE
I1	20190224	Cloudy	Light	Mid-Ebb	M	5	14:40	12.7	8.92	32.73	17.1	4.1	4	112	0.47	SE
I1	20190224	Cloudy	Light	Mid-Ebb	S	1	14:41	12.8	8.83	29.55	17.8	3.83	5	113	0.58	SE
I1	20190224	Cloudy	Light	Mid-Ebb	S	1	14:41	12.99	8.98	31.33	17.1	3.82	6	113	0.59	SE
I2	20190224	Cloudy	Light	Mid-Ebb	В	10.2	14:45	12.13	8.59	31.46	17.2	5	11	113	0.35	SE
I2	20190224	Cloudy	Light	Mid-Ebb	В	10.2	14:45	11.99	8.64	29.75	17.6	4.98	10	114	0.37	SE
I2	20190224	Cloudy	Light	Mid-Ebb	M	5.6	14:46	11.84	9	32.78	17.3	4.22	9	113	0.41	SE
I2	20190224	Cloudy	Light	Mid-Ebb	M	5.6	14:46	11.92	9	29.29	17.4	4.22	10	112	0.43	SE
I2	20190224	Cloudy	Light	Mid-Ebb	S	1	14:47	11.98	8.53	30.77	17.1	3.73	6	113	0.5	SE
I2	20190224	Cloudy	Light	Mid-Ebb	S	1	14:47	11.96	8.96	31.72	17.2	3.65	7	112	0.49	SE
I3	20190224	Cloudy	Light	Mid-Ebb	В	9.5	14:51	12.96	8.56	29.48	17.6	4.75	7	114	0.32	SE
I3	20190224	Cloudy	Light	Mid-Ebb	В	9.5	14:51	13.02	8.79	29.5	17.8	4.84	7	114	0.3	SE
I3	20190224	Cloudy	Light	Mid-Ebb	M	5.3	14:52	13.11	8.69	32.99	17.7	4.23	5	113	0.46	SE
I3	20190224	Cloudy	Light	Mid-Ebb	M	5.3	14:52	13.3	8.87	30.84	17.5	4.16	4	112	0.45	SE
I3	20190224	Cloudy	Light	Mid-Ebb	S	1	14:53	13.22	8.7	29.61	17.3	3.86	5	112	0.52	SE
I3	20190224	Cloudy	Light	Mid-Ebb	S	1	14:53	13.11	8.62	30.85	17.5	3.95	4	113	0.54	SE
I4	20190224	Cloudy	Light	Mid-Ebb	В	8.6	14:57	12.33	8.77	30.67	17.7	4.68	5	112	0.38	SE
I4	20190224	Cloudy	Light	Mid-Ebb	В	8.6	14:57	12.5	8.86	29.67	17.2	4.74	6	112	0.38	SE
I4	20190224	Cloudy	Light	Mid-Ebb	M	4.8	14:58	12.48	8.9	32.66	17.4	4.25	4	114	0.46	SE
I4	20190224	Cloudy	Light	Mid-Ebb	M	4.8	14:58	12.5	8.84	32.55	17.4	4.21	4	113	0.45	SE
I4	20190224	Cloudy	Light	Mid-Ebb	S	1	14:59	12.67	8.85	30.3	17.7	3.9	5	113	0.55	SE
I4	20190224	Cloudy	Light	Mid-Ebb	S	1	14:59	12.51	8.92	31.99	17.1	3.87	6	113	0.55	SE
I5	20190224	Cloudy	Light	Mid-Ebb	В	10.1	15:03	12.68	8.66	30.52	17.1	5	4	114	0.3	SE
I5	20190224	Cloudy	Light	Mid-Ebb	В	10.1	15:03	12.56	8.95	32.87	17.4	5.06	3	114	0.32	SE
I5	20190224	Cloudy	Light	Mid-Ebb	M	5.6	15:04	12.38	8.75	30.92	17.7	4.25	4	114	0.5	SE
I5	20190224	Cloudy	Light	Mid-Ebb	M	5.6	15:04	12.54	8.62	33.07	17.7	4.27	5	113	0.5	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190224	Cloudy	Light	Mid-Ebb	S	1	15:05	12.72	8.86	29.91	17.8	3.7	5	113	0.57	SE
I5	20190224	Cloudy	Light	Mid-Ebb	S	1	15:05	12.61	8.71	31.91	17.2	3.63	5	114	0.58	SE
I6	20190224	Cloudy	Light	Mid-Ebb	В	10	15:33	12.95	8.67	30.59	17.6	4.89	5	114	0.34	SE
I6	20190224	Cloudy	Light	Mid-Ebb	В	10	15:33	12.83	8.78	30.83	17.8	4.99	6	114	0.35	SE
I6	20190224	Cloudy	Light	Mid-Ebb	M	5.5	15:34	12.72	8.84	30.7	17.2	4.38	4	114	0.41	SE
I6	20190224	Cloudy	Light	Mid-Ebb	M	5.5	15:34	12.78	8.71	30.1	17.4	4.46	5	114	0.4	SE
I6	20190224	Cloudy	Light	Mid-Ebb	S	1	15:35	12.95	8.83	29.41	17.7	3.65	3	113	0.57	SE
I6	20190224	Cloudy	Light	Mid-Ebb	S	1	15:35	12.81	8.98	31.98	17.4	3.75	3	112	0.59	SE
I7	20190224	Cloudy	Light	Mid-Ebb	В	9.6	15:27	12.93	9	32.98	17.2	4.59	4	113	0.4	SE
I7	20190224	Cloudy	Light	Mid-Ebb	В	9.6	15:27	12.83	8.96	31.62	17.7	4.65	4	114	0.41	SE
I7	20190224	Cloudy	Light	Mid-Ebb	M	5.3	15:28	13.01	8.59	31.63	17.5	4.43	6	113	0.45	SE
I7	20190224	Cloudy	Light	Mid-Ebb	M	5.3	15:28	12.83	8.54	30.05	17.8	4.46	6	114	0.44	SE
I7	20190224	Cloudy	Light	Mid-Ebb	S	1	15:29	12.68	8.8	31.76	17.7	3.77	7	113	0.5	SE
I7	20190224	Cloudy	Light	Mid-Ebb	S	1	15:29	12.86	8.76	31.07	17.3	3.75	7	113	0.51	SE
I8	20190224	Cloudy	Light	Mid-Ebb	В	10.2	15:21	12.95	8.91	33.04	17.3	4.84	4	113	0.35	SE
18	20190224	Cloudy	Light	Mid-Ebb	В	10.2	15:21	13.05	8.66	32.63	17.7	4.83	4	112	0.34	SE
I8	20190224	Cloudy	Light	Mid-Ebb	M	5.6	15:22	12.85	8.5	29.19	17.7	4.32	3	113	0.42	SE
I8	20190224	Cloudy	Light	Mid-Ebb	M	5.6	15:22	12.66	8.66	29.81	17.5	4.24	4	113	0.42	SE
18	20190224	Cloudy	Light	Mid-Ebb	S	1	15:23	12.7	8.58	31.95	17.2	3.97	2	113	0.59	SE
I8	20190224	Cloudy	Light	Mid-Ebb	S	1	15:23	12.67	8.77	31.42	17.6	3.87	4	114	0.6	SE
I 9	20190224	Cloudy	Light	Mid-Ebb	В	8.6	15:15	12.2	8.87	32.53	17.1	4.84	8	114	0.32	SE
19	20190224	Cloudy	Light	Mid-Ebb	В	8.6	15:15	12.06	8.56	29.3	17.3	4.8	7	113	0.33	SE
19	20190224	Cloudy	Light	Mid-Ebb	M	4.8	15:16	12.16	8.99	32.01	17.1	4.06	7	114	0.46	SE
I9	20190224	Cloudy	Light	Mid-Ebb	M	4.8	15:16	12.24	8.68	30.27	17.8	4.05	7	113	0.44	SE
I9	20190224	Cloudy	Light	Mid-Ebb	S	1	15:17	12.13	8.75	30.03	17.5	3.69	6	114	0.51	SE
19	20190224	Cloudy	Light	Mid-Ebb	S	1	15:17	12.09	8.55	32.86	17.8	3.72	7	113	0.53	SE
I10	20190224	Cloudy	Light	Mid-Ebb	В	8.9	15:09	12.29	8.76	31.79	17.3	4.86	8	114	0.35	SE
I10	20190224	Cloudy	Light	Mid-Ebb	В	8.9	15:09	12.33	8.67	31.04	17.4	4.95	8	114	0.37	SE
I10	20190224	Cloudy	Light	Mid-Ebb	M	5	15:10	12.5	8.7	32.5	17.7	4.3	6	114	0.47	SE
I10	20190224	Cloudy	Light	Mid-Ebb	M	5	15:10	12.65	8.58	30.21	17.1	4.4	6	114	0.49	SE
I10	20190224	Cloudy	Light	Mid-Ebb	S	1	15:11	12.46	9	30.52	17.6	3.79	4	114	0.5	SE
I10	20190224	Cloudy	Light	Mid-Ebb	S	1	15:11	12.66	8.57	29.61	17.6	3.79	4	114	0.52	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC1	20190226	Cloudy	Light	Mid-Flood	В	9.8	10:32	9.88	9.03	29.3	20.8	3.94	7	112	0.44	NW
UC1	20190226	Cloudy	Light	Mid-Flood	В	9.8	10:32	9.84	8.97	29.8	21	4.03	6	114	0.46	NW
UC1	20190226	Cloudy	Light	Mid-Flood	M	5.4	10:33	9.93	9.06	29.15	20.2	3.16	5	112	0.59	NW
UC1	20190226	Cloudy	Light	Mid-Flood	M	5.4	10:33	10.13	9.05	31.47	20.8	3.15	4	112	0.59	NW
UC1	20190226	Cloudy	Light	Mid-Flood	S	1	10:34	10.16	8.98	29.71	20.5	2.54	3	112	0.66	NW
UC1	20190226	Cloudy	Light	Mid-Flood	S	1	10:34	10.07	9.06	30.55	20.9	2.49	4	112	0.65	NW
UC2	20190226	Cloudy	Light	Mid-Flood	В	8.8	10:36	9.86	8.9	30.04	20.8	3.89	6	112	0.49	NW
UC2	20190226	Cloudy	Light	Mid-Flood	В	8.8	10:36	9.93	8.97	29.65	21	3.97	7	112	0.47	NW
UC2	20190226	Cloudy	Light	Mid-Flood	M	4.9	10:37	10.02	9.05	29.33	20.4	3.48	7	112	0.58	NW
UC2	20190226	Cloudy	Light	Mid-Flood	M	4.9	10:37	9.98	9	29.2	20.5	3.38	6	112	0.58	NW
UC2	20190226	Cloudy	Light	Mid-Flood	S	1	10:38	10.14	9.07	30.29	20.2	2.53	7	112	0.64	NW
UC2	20190226	Cloudy	Light	Mid-Flood	S	1	10:38	9.94	9.02	30.74	20.7	2.47	7	112	0.66	NW
I1	20190226	Cloudy	Light	Mid-Flood	В	10.4	10:42	9.72	9.05	29.89	20.2	3.78	6	112	0.49	NW
I1	20190226	Cloudy	Light	Mid-Flood	В	10.4	10:42	9.91	9.01	31.33	20.6	3.83	6	112	0.47	NW
I1	20190226	Cloudy	Light	Mid-Flood	M	5.7	10:43	9.95	8.9	29.58	20.2	3.1	4	113	0.6	NW
I1	20190226	Cloudy	Light	Mid-Flood	M	5.7	10:43	10.05	9.01	29.85	20.9	3.15	5	112	0.62	NW
I1	20190226	Cloudy	Light	Mid-Flood	S	1	10:44	9.85	8.9	31.5	20.7	2.66	7	112	0.64	NW
I1	20190226	Cloudy	Light	Mid-Flood	S	1	10:44	9.7	8.9	29.36	20.8	2.73	7	112	0.62	NW
I2	20190226	Cloudy	Light	Mid-Flood	В	10.8	10:47	9.63	9	29.5	20.5	3.77	4	113	0.42	NW
I2	20190226	Cloudy	Light	Mid-Flood	В	10.8	10:47	9.43	8.96	29.84	20.6	3.82	5	113	0.41	NW
I2	20190226	Cloudy	Light	Mid-Flood	M	5.9	10:48	9.48	9.03	29.74	20.5	3.32	5	112	0.5	NW
I2	20190226	Cloudy	Light	Mid-Flood	M	5.9	10:48	9.46	8.9	29.37	20.8	3.37	4	113	0.48	NW
I2	20190226	Cloudy	Light	Mid-Flood	S	1	10:49	9.57	9.03	31.8	20.8	2.86	7	111	0.64	NW
I2	20190226	Cloudy	Light	Mid-Flood	S	1	10:49	9.53	8.89	31.04	20.5	2.79	7	112	0.62	NW
I3	20190226	Cloudy	Light	Mid-Flood	В	10.4	10:52	9.08	8.88	31.33	20.5	3.8	4	113	0.46	NW
I3	20190226	Cloudy	Light	Mid-Flood	В	10.4	10:52	9.28	9.01	31.02	20.8	3.81	3	113	0.44	NW
13	20190226	Cloudy	Light	Mid-Flood	M	5.7	10:53	9.1	8.93	29.92	20.8	3.16	6	112	0.51	NW
13	20190226	Cloudy	Light	Mid-Flood	M	5.7	10:53	9.01	9.05	29.25	20.9	3.14	5	113	0.49	NW
I3	20190226	Cloudy	Light	Mid-Flood	S	1	10:54	8.93	8.88	31.58	20.2	2.86	6	112	0.66	NW
13	20190226	Cloudy	Light	Mid-Flood	S	1	10:54	8.76	8.99	30.13	20.7	2.96	6	113	0.64	NW
I4	20190226	Cloudy	Light	Mid-Flood	В	8.9	11:00	9.86	8.91	31.1	20.3	3.99	9	114	0.4	NW
I4	20190226	Cloudy	Light	Mid-Flood	В	8.9	11:00	9.98	9.07	30.96	20.6	4.03	9	112	0.4	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I4	20190226	Cloudy	Light	Mid-Flood	M	5	11:01	9.84	8.89	31.25	20.2	3.02	6	113	0.54	NW
I4	20190226	Cloudy	Light	Mid-Flood	M	5	11:01	9.67	8.95	29.16	21	3	7	113	0.55	NW
I4	20190226	Cloudy	Light	Mid-Flood	S	1	11:02	9.54	8.94	31.5	20.3	2.5	4	114	0.63	NW
I4	20190226	Cloudy	Light	Mid-Flood	S	1	11:02	9.6	8.97	29.47	20.8	2.56	3	112	0.61	NW
I5	20190226	Cloudy	Light	Mid-Flood	В	9.3	11:07	9.92	9.03	30.64	21	3.84	6	113	0.49	NW
I5	20190226	Cloudy	Light	Mid-Flood	В	9.3	11:07	9.74	8.93	31.17	20.9	3.87	6	112	0.48	NW
I5	20190226	Cloudy	Light	Mid-Flood	M	5.2	11:08	9.92	9	31.26	20.9	3.16	6	112	0.5	NW
I5	20190226	Cloudy	Light	Mid-Flood	M	5.2	11:08	9.88	8.94	31.39	20.3	3.2	7	112	0.48	NW
I5	20190226	Cloudy	Light	Mid-Flood	S	1	11:09	9.69	8.95	31.26	21	2.89	10	112	0.61	NW
I5	20190226	Cloudy	Light	Mid-Flood	S	1	11:09	9.57	9	29.57	20.2	2.95	9	113	0.62	NW
I6	20190226	Cloudy	Light	Mid-Flood	В	10.5	11:33	9.37	8.96	31.86	20.7	3.74	5	111	0.46	NW
I6	20190226	Cloudy	Light	Mid-Flood	В	10.5	11:33	9.55	9.05	29.82	20.8	3.79	5	112	0.48	NW
I6	20190226	Cloudy	Light	Mid-Flood	M	5.8	11:34	9.69	8.94	31.79	21	3.46	4	112	0.5	NW
I6	20190226	Cloudy	Light	Mid-Flood	M	5.8	11:34	9.76	8.98	29.96	20.4	3.54	5	111	0.48	NW
I6	20190226	Cloudy	Light	Mid-Flood	S	1	11:35	9.57	9.02	30.07	20.3	2.58	8	113	0.63	NW
I6	20190226	Cloudy	Light	Mid-Flood	S	1	11:35	9.62	8.9	30.99	20.2	2.67	7	113	0.62	NW
I7	20190226	Cloudy	Light	Mid-Flood	В	9.5	11:29	9.2	8.99	31.21	20.7	3.73	3	112	0.45	NW
I7	20190226	Cloudy	Light	Mid-Flood	В	9.5	11:29	9.36	9.02	30.49	20.3	3.76	3	112	0.43	NW
I7	20190226	Cloudy	Light	Mid-Flood	M	5.3	11:30	9.45	8.94	30.41	20.5	3.25	4	112	0.55	NW
I7	20190226	Cloudy	Light	Mid-Flood	M	5.3	11:30	9.61	8.96	30.4	20.4	3.2	4	112	0.54	NW
I7	20190226	Cloudy	Light	Mid-Flood	S	1	11:31	9.45	8.93	31.51	21	2.7	7	112	0.67	NW
I7	20190226	Cloudy	Light	Mid-Flood	S	1	11:31	9.48	9.02	30.63	21	2.8	7	112	0.67	NW
18	20190226	Cloudy	Light	Mid-Flood	В	9.9	11:25	9.74	8.89	29.64	20.5	3.77	6	113	0.48	NW
18	20190226	Cloudy	Light	Mid-Flood	В	9.9	11:25	9.78	9.04	31.23	20.9	3.76	6	111	0.46	NW
18	20190226	Cloudy	Light	Mid-Flood	M	5.5	11:26	9.79	8.95	31.78	20.4	3.24	3	113	0.53	NW
18	20190226	Cloudy	Light	Mid-Flood	M	5.5	11:26	9.67	8.97	31.26	20.2	3.18	4	112	0.51	NW
18	20190226	Cloudy	Light	Mid-Flood	S	1	11:27	9.66	8.98	29.56	20.9	2.63	4	112	0.61	NW
18	20190226	Cloudy	Light	Mid-Flood	S	1	11:27	9.75	8.89	31.47	20.9	2.54	5	112	0.63	NW
I 9	20190226	Cloudy	Light	Mid-Flood	В	9.8	11:18	9.45	9.03	29.28	21	3.72	3	112	0.45	NW
I9	20190226	Cloudy	Light	Mid-Flood	В	9.8	11:18	9.52	8.9	30.43	20.4	3.68	2	112	0.46	NW
I9	20190226	Cloudy	Light	Mid-Flood	M	5.4	11:19	9.51	8.97	29.84	20.3	3.36	4	112	0.5	NW
I9	20190226	Cloudy	Light	Mid-Flood	M	5.4	11:19	9.46	8.91	30.03	20.2	3.43	3	112	0.52	NW

Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I9	20190226	Cloudy	Light	Mid-Flood	S	1	11:20	9.44	8.98	31.16	20.5	2.97	4	113	0.69	NW
I9	20190226	Cloudy	Light	Mid-Flood	S	1	11:20	9.48	9.06	29.84	20.7	2.91	3	112	0.71	NW
I10	20190226	Cloudy	Light	Mid-Flood	В	9.3	11:14	9.93	8.89	31.5	20.4	3.62	7	112	0.48	NW
I10	20190226	Cloudy	Light	Mid-Flood	В	9.3	11:14	9.85	8.95	31.54	20.9	3.63	8	113	0.49	NW
I10	20190226	Cloudy	Light	Mid-Flood	M	5.2	11:15	10.05	8.9	31.93	20.8	3.18	5	113	0.54	NW
I10	20190226	Cloudy	Light	Mid-Flood	M	5.2	11:15	9.88	8.9	29.74	20.6	3.28	4	113	0.56	NW
I10	20190226	Cloudy	Light	Mid-Flood	S	1	11:16	9.92	8.89	31.83	20.5	2.82	6	113	0.62	NW
I10	20190226	Cloudy	Light	Mid-Flood	S	1	11:16	9.81	8.92	30.13	20.6	2.74	6	113	0.63	NW
UC1	20190226	Cloudy	Light	Mid-Ebb	В	10.3	16:13	9.8	8.93	30.11	21	3.8	7	112	0.4	SE
UC1	20190226	Cloudy	Light	Mid-Ebb	В	10.3	16:13	9.8	9.07	29.25	20.2	3.82	7	112	0.38	SE
UC1	20190226	Cloudy	Light	Mid-Ebb	M	5.7	16:14	9.77	8.88	29.78	20.3	3.12	8	113	0.5	SE
UC1	20190226	Cloudy	Light	Mid-Ebb	M	5.7	16:14	9.79	9.02	30.63	20.8	3.12	8	112	0.5	SE
UC1	20190226	Cloudy	Light	Mid-Ebb	S	1	16:15	9.59	9.07	31.05	20.8	2.79	8	111	0.64	SE
UC1	20190226	Cloudy	Light	Mid-Ebb	S	1	16:15	9.44	8.93	29.82	20.5	2.81	8	113	0.63	SE
UC2	20190226	Cloudy	Light	Mid-Ebb	В	8.8	16:19	9.12	9.06	30.77	20.8	3.5	8	112	0.49	SE
UC2	20190226	Cloudy	Light	Mid-Ebb	В	8.8	16:19	9.3	8.93	30.83	21	3.51	8	113	0.49	SE
UC2	20190226	Cloudy	Light	Mid-Ebb	M	4.9	16:20	9.49	9.03	31.65	20.7	3.5	9	112	0.55	SE
UC2	20190226	Cloudy	Light	Mid-Ebb	M	4.9	16:20	9.38	9.02	30	20.5	3.52	9	112	0.53	SE
UC2	20190226	Cloudy	Light	Mid-Ebb	S	1	16:21	9.57	8.96	30.84	21	2.92	7	113	0.63	SE
UC2	20190226	Cloudy	Light	Mid-Ebb	S	1	16:21	9.65	9.02	31.13	20.2	2.97	7	113	0.63	SE
I1	20190226	Cloudy	Light	Mid-Ebb	В	10.3	16:24	9.63	9.03	29.15	21	3.83	7	113	0.5	SE
I1	20190226	Cloudy	Light	Mid-Ebb	В	10.3	16:24	9.46	8.9	31.2	20.2	3.88	6	112	0.5	SE
I1	20190226	Cloudy	Light	Mid-Ebb	M	5.7	16:25	9.27	9.02	31.26	20.3	3.26	6	112	0.56	SE
I1	20190226	Cloudy	Light	Mid-Ebb	M	5.7	16:25	9.43	8.97	30.93	20.9	3.36	6	112	0.54	SE
I1	20190226	Cloudy	Light	Mid-Ebb	S	1	16:26	9.54	9.02	31.25	20.7	2.78	7	112	0.7	SE
I1	20190226	Cloudy	Light	Mid-Ebb	S	1	16:26	9.61	9.03	30.87	20.3	2.81	7	112	0.71	SE
I2	20190226	Cloudy	Light	Mid-Ebb	В	9.9	16:28	9	8.9	29.25	20.2	3.95	10	113	0.42	SE
I2	20190226	Cloudy	Light	Mid-Ebb	В	9.9	16:28	9.03	9.05	30.03	20.5	3.86	10	113	0.42	SE
I2	20190226	Cloudy	Light	Mid-Ebb	М	5.5	16:29	9.17	9.02	30.76	20.5	3.19	14	113	0.55	SE
I2	20190226	Cloudy	Light	Mid-Ebb	M	5.5	16:29	9.21	8.93	30.85	20.6	3.14	13	113	0.57	SE
I2	20190226	Cloudy	Light	Mid-Ebb	S	1	16:30	9.01	8.94	29.71	21	2.99	13	112	0.62	SE
I2	20190226	Cloudy	Light	Mid-Ebb	S	1	16:30	9.05	9.07	30.59	20.2	3.04	14	113	0.61	SE

Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I3	20190226	Cloudy	Light	Mid-Ebb	В	8.5	16:33	9.94	8.92	30.56	20.5	3.5	15	113	0.44	SE
I3	20190226	Cloudy	Light	Mid-Ebb	В	8.5	16:33	10.11	8.88	29.42	20.3	3.5	16	113	0.43	SE
I3	20190226	Cloudy	Light	Mid-Ebb	M	4.8	16:34	9.94	8.88	31.31	20.4	3.32	15	113	0.52	SE
I3	20190226	Cloudy	Light	Mid-Ebb	M	4.8	16:34	9.93	9.01	29.17	20.5	3.4	15	113	0.5	SE
I3	20190226	Cloudy	Light	Mid-Ebb	S	1	16:35	9.84	8.93	30.02	21	2.89	15	113	0.61	SE
I3	20190226	Cloudy	Light	Mid-Ebb	S	1	16:35	10.02	9.02	29.65	20.9	2.86	14	114	0.61	SE
I4	20190226	Cloudy	Light	Mid-Ebb	В	10	16:38	9.14	8.96	29.61	20.3	3.6	7	113	0.43	SE
I4	20190226	Cloudy	Light	Mid-Ebb	В	10	16:38	9	8.99	29.34	20.8	3.6	7	113	0.45	SE
I4	20190226	Cloudy	Light	Mid-Ebb	M	5.5	16:39	9.13	8.95	31.62	20.5	3.38	8	113	0.59	SE
I4	20190226	Cloudy	Light	Mid-Ebb	M	5.5	16:39	9.15	8.96	29.53	20.3	3.41	9	113	0.61	SE
I4	20190226	Cloudy	Light	Mid-Ebb	S	1	16:40	9.28	8.9	30.42	20.3	2.74	6	114	0.67	SE
I4	20190226	Cloudy	Light	Mid-Ebb	S	1	16:40	9.16	8.88	31.57	20.3	2.77	7	114	0.69	SE
I5	20190226	Cloudy	Light	Mid-Ebb	В	8.5	16:42	9.41	8.95	30.08	20.4	3.89	8	114	0.42	SE
I5	20190226	Cloudy	Light	Mid-Ebb	В	8.5	16:42	9.32	9.02	29.7	20.3	3.9	7	113	0.44	SE
I5	20190226	Cloudy	Light	Mid-Ebb	M	4.8	16:43	9.34	8.97	31.42	20.4	3.49	9	113	0.51	SE
I5	20190226	Cloudy	Light	Mid-Ebb	M	4.8	16:43	9.26	9.02	29.88	20.7	3.45	8	113	0.53	SE
I5	20190226	Cloudy	Light	Mid-Ebb	S	1	16:44	9.1	8.98	29.59	21	2.98	10	113	0.68	SE
I5	20190226	Cloudy	Light	Mid-Ebb	S	1	16:44	8.96	8.97	29.27	20.4	3.02	10	113	0.69	SE
I6	20190226	Cloudy	Light	Mid-Ebb	В	9.8	17:05	9.41	8.88	29.56	20.7	3.95	12	113	0.47	SE
I6	20190226	Cloudy	Light	Mid-Ebb	В	9.8	17:05	9.32	9.05	31.86	20.7	3.92	10	112	0.49	SE
I6	20190226	Cloudy	Light	Mid-Ebb	M	5.4	17:06	9.14	9.02	31.07	20.9	3.21	12	113	0.51	SE
I6	20190226	Cloudy	Light	Mid-Ebb	M	5.4	17:06	9	9.02	31.81	20.8	3.12	10	112	0.52	SE
I6	20190226	Cloudy	Light	Mid-Ebb	S	1	17:07	8.83	8.96	29.07	20.5	2.84	10	113	0.65	SE
I6	20190226	Cloudy	Light	Mid-Ebb	S	1	17:07	8.75	8.88	30.34	20.2	2.76	11	112	0.66	SE
I7	20190226	Cloudy	Light	Mid-Ebb	В	8.8	17:01	9.68	9.04	29.46	20.7	3.59	9	113	0.45	SE
I7	20190226	Cloudy	Light	Mid-Ebb	В	8.8	17:01	9.55	9.06	30.76	20.7	3.62	10	114	0.46	SE
I7	20190226	Cloudy	Light	Mid-Ebb	M	4.9	17:02	9.58	8.94	31.76	20.5	3.08	8	113	0.59	SE
I7	20190226	Cloudy	Light	Mid-Ebb	M	4.9	17:02	9.58	8.97	31.23	20.3	3.05	9	114	0.59	SE
I7	20190226	Cloudy	Light	Mid-Ebb	S	1	17:03	9.77	8.93	29.11	20.7	2.69	9	113	0.7	SE
I7	20190226	Cloudy	Light	Mid-Ebb	S	1	17:03	9.65	9.05	31.38	20.7	2.67	9	113	0.71	SE
I8	20190226	Cloudy	Light	Mid-Ebb	В	9.7	16:56	9.47	9.06	30.35	20.3	3.53	7	113	0.44	SE
I8	20190226	Cloudy	Light	Mid-Ebb	В	9.7	16:56	9.41	8.9	30.99	20.6	3.57	6	113	0.43	SE

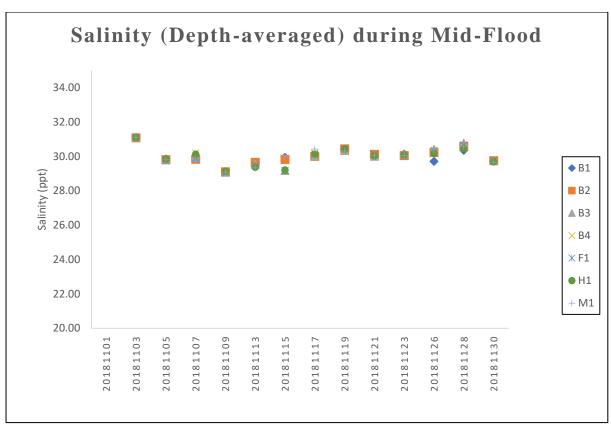
Location	Date	Weather	Sea Condition	Tidal	Water Level Note 1	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
18	20190226	Cloudy	Light	Mid-Ebb	M	5.4	16:57	9.33	8.99	29.96	20.3	3.19	9	113	0.52	SE
18	20190226	Cloudy	Light	Mid-Ebb	M	5.4	16:57	9.18	8.99	31.71	20.2	3.23	10	113	0.5	SE
18	20190226	Cloudy	Light	Mid-Ebb	S	1	16:58	9.35	9	30.6	20.7	2.53	10	113	0.65	SE
18	20190226	Cloudy	Light	Mid-Ebb	S	1	16:58	9.24	9.01	29.52	20.3	2.6	10	114	0.66	SE
I9	20190226	Cloudy	Light	Mid-Ebb	В	8.6	16:52	9.47	8.98	30.3	20.2	3.97	7	113	0.44	SE
I9	20190226	Cloudy	Light	Mid-Ebb	В	8.6	16:52	9.53	8.91	30.54	20.4	3.92	7	113	0.46	SE
I9	20190226	Cloudy	Light	Mid-Ebb	M	4.8	16:53	9.51	9.01	31.6	20.8	3.19	6	114	0.52	SE
I9	20190226	Cloudy	Light	Mid-Ebb	M	4.8	16:53	9.68	9.07	30.58	20.2	3.2	7	113	0.54	SE
I9	20190226	Cloudy	Light	Mid-Ebb	S	1	16:54	9.7	8.95	31.32	20.9	2.97	5	113	0.7	SE
I9	20190226	Cloudy	Light	Mid-Ebb	S	1	16:54	9.89	9	29.4	21	2.91	6	114	0.7	SE
I10	20190226	Cloudy	Light	Mid-Ebb	В	9.2	16:47	9.14	8.88	30.2	21	3.67	10	114	0.5	SE
I10	20190226	Cloudy	Light	Mid-Ebb	В	9.2	16:47	9.2	9.01	31.57	20.4	3.6	10	113	0.48	SE
I10	20190226	Cloudy	Light	Mid-Ebb	M	5.1	16:48	9.01	8.91	31.22	20.6	3.15	12	114	0.54	SE
I10	20190226	Cloudy	Light	Mid-Ebb	M	5.1	16:48	8.98	9.06	31.56	20.7	3.23	12	113	0.53	SE
I10	20190226	Cloudy	Light	Mid-Ebb	S	1	16:49	9.13	9.03	29.38	20.3	2.86	5	113	0.7	SE
I10	20190226	Cloudy	Light	Mid-Ebb	S	1	16:49	9.11	8.93	30.48	20.8	2.82	5	113	0.68	SE
UC1	20190228	Cloudy	Light	Mid-Flood	В	10.8	12:10	9.27	8.2	31.09	20.1	4.73	2	113	0.42	NW
UC1	20190228	Cloudy	Light	Mid-Flood	В	10.8	12:10	9.09	8.26	31.54	20.2	4.42	2	113	0.4	NW
UC1	20190228	Cloudy	Light	Mid-Flood	M	5.9	12:11	9.12	8.3	30.93	20.2	3.58	2	112	0.35	NW
UC1	20190228	Cloudy	Light	Mid-Flood	M	5.9	12:11	9.07	8.43	30.88	20.1	3.45	2	114	0.34	NW
UC1	20190228	Cloudy	Light	Mid-Flood	S	1	12:12	9.1	8.14	30.34	20.1	3.03	4	113	0.45	NW
UC1	20190228	Cloudy	Light	Mid-Flood	S	1	12:12	9.05	8.34	31.83	20.2	2.91	4	112	0.45	NW
UC2	20190228	Cloudy	Light	Mid-Flood	В	9.9	12:20	9.12	8.27	30.41	20.2	4.4	4	112	0.37	NW
UC2	20190228	Cloudy	Light	Mid-Flood	В	9.9	12:20	9.15	8.32	31.27	20.2	4.24	4	114	0.38	NW
UC2	20190228	Cloudy	Light	Mid-Flood	M	5.5	12:21	9.27	8.24	31.52	20.1	3.77	5	113	0.45	NW
UC2	20190228	Cloudy	Light	Mid-Flood	M	5.5	12:21	9.26	8.13	30.51	20.2	3.31	5	113	0.46	NW
UC2	20190228	Cloudy	Light	Mid-Flood	S	1	12:22	9.21	8.39	30.93	20.1	3.02	4	113	0.39	NW
UC2	20190228	Cloudy	Light	Mid-Flood	S	1	12:22	9.12	8.53	31.42	20.2	2.75	4	113	0.4	NW
I1	20190228	Cloudy	Light	Mid-Flood	В	9.1	12:25	9.25	8.25	31.24	20.2	4.67	5	114	0.42	NW
I1	20190228	Cloudy	Light	Mid-Flood	В	9.1	12:25	9.12	8.35	31.16	20.1	4.33	5	113	0.44	NW
I1	20190228	Cloudy	Light	Mid-Flood	M	5.1	12:26	9.27	8.52	31.14	20.2	3.83	7	114	0.41	NW
I1	20190228	Cloudy	Light	Mid-Flood	M	5.1	12:26	9.24	8.13	31.41	20.2	3.72	6	113	0.41	NW

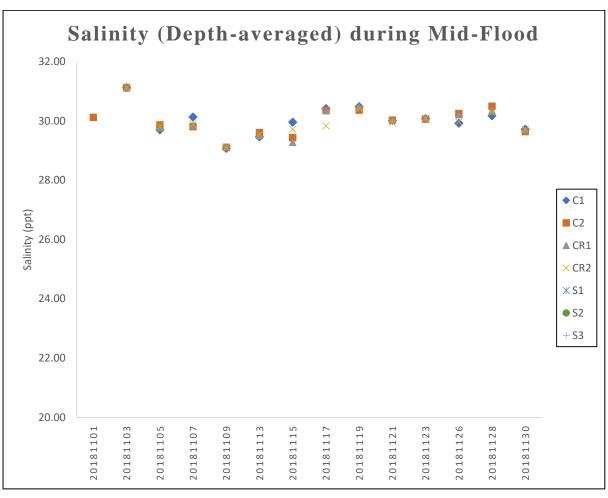
Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I1	20190228	Cloudy	Light	Mid-Flood	S	1	12:27	9.08	8.47	31.51	20.1	2.86	6	112	0.42	NW
I1	20190228	Cloudy	Light	Mid-Flood	S	1	12:27	9.09	8.15	31.3	20.2	2.79	6	113	0.4	NW
I2	20190228	Cloudy	Light	Mid-Flood	В	10.2	12:29	9.25	8.48	30.43	20.2	4.52	3	113	0.34	NW
I2	20190228	Cloudy	Light	Mid-Flood	В	10.2	12:29	9.25	8.18	31.64	20.1	4.26	4	112	0.36	NW
I2	20190228	Cloudy	Light	Mid-Flood	M	5.6	12:30	9.24	8.43	30.39	20.1	3.31	5	113	0.39	NW
I2	20190228	Cloudy	Light	Mid-Flood	M	5.6	12:30	9.13	8.27	30.79	20.1	3.3	4	113	0.38	NW
I2	20190228	Cloudy	Light	Mid-Flood	S	1	12:31	9.05	8.15	30.57	20.1	3.02	6	114	0.4	NW
I2	20190228	Cloudy	Light	Mid-Flood	S	1	12:31	9.02	8.27	30.5	20.2	2.96	6	114	0.4	NW
I3	20190228	Cloudy	Light	Mid-Flood	В	10.9	12:35	9.07	8.47	31.83	20.2	4.16	4	113	0.44	NW
I3	20190228	Cloudy	Light	Mid-Flood	В	10.9	12:35	9.11	8.49	31.06	20.2	4.15	3	112	0.42	NW
I3	20190228	Cloudy	Light	Mid-Flood	M	6	12:36	9.24	8.25	30.12	20.2	3.29	5	112	0.42	NW
I3	20190228	Cloudy	Light	Mid-Flood	M	6	12:36	9.03	8.42	31.74	20.2	3.63	4	112	0.44	NW
I3	20190228	Cloudy	Light	Mid-Flood	S	1	12:37	9.22	8.2	31.01	20.1	2.79	4	113	0.35	NW
I3	20190228	Cloudy	Light	Mid-Flood	S	1	12:37	9.05	8.37	31.03	20.2	2.74	5	112	0.33	NW
I4	20190228	Cloudy	Light	Mid-Flood	В	10.1	12:40	9.16	8.57	31.35	20.2	4.41	4	112	0.43	NW
I4	20190228	Cloudy	Light	Mid-Flood	В	10.1	12:40	9.16	8.49	31.41	20.1	4.24	4	112	0.44	NW
I4	20190228	Cloudy	Light	Mid-Flood	M	5.6	12:41	9.22	8.56	30.51	20.2	3.4	6	112	0.43	NW
I4	20190228	Cloudy	Light	Mid-Flood	M	5.6	12:41	9.02	8.13	31.61	20.2	3.48	6	112	0.42	NW
I4	20190228	Cloudy	Light	Mid-Flood	S	1	12:42	9.11	8.55	30.94	20.1	3.06	6	113	0.38	NW
I4	20190228	Cloudy	Light	Mid-Flood	S	1	12:42	9.26	8.19	31.61	20.1	3.05	7	113	0.4	NW
I5	20190228	Cloudy	Light	Mid-Flood	В	10	12:45	9.13	8.26	31.72	20.1	4.65	3	112	0.4	NW
I5	20190228	Cloudy	Light	Mid-Flood	В	10	12:45	9.07	8.29	31.91	20.1	4.33	2	113	0.4	NW
I5	20190228	Cloudy	Light	Mid-Flood	M	5.5	12:46	9.15	8.27	31.77	20.1	3.32	4	112	0.4	NW
I5	20190228	Cloudy	Light	Mid-Flood	M	5.5	12:46	9.02	8.24	30.69	20.1	3.45	3	113	0.41	NW
I5	20190228	Cloudy	Light	Mid-Flood	S	1	12:47	9.26	8.15	31.3	20.2	2.76	3	113	0.38	NW
I5	20190228	Cloudy	Light	Mid-Flood	S	1	12:47	9.07	8.41	31.84	20.1	3.01	4	112	0.38	NW
I6	20190228	Cloudy	Light	Mid-Flood	В	9.7	13:12	9.07	8.47	30.74	20.2	4.88	3	113	0.44	NW
I6	20190228	Cloudy	Light	Mid-Flood	В	9.7	13:12	9.15	8.24	31.57	20.2	4.28	2	113	0.43	NW
I6	20190228	Cloudy	Light	Mid-Flood	M	5.4	13:13	9.11	8.5	30.21	20.2	3.44	3	113	0.35	NW
I6	20190228	Cloudy	Light	Mid-Flood	M	5.4	13:13	9.25	8.54	31.24	20.2	3.34	3	114	0.33	NW
I6	20190228	Cloudy	Light	Mid-Flood	S	1	13:14	9.26	8.4	30.17	20.1	3.03	3	112	0.45	NW
I6	20190228	Cloudy	Light	Mid-Flood	S	1	13:14	9.14	8.47	30.84	20.1	2.81	2	113	0.46	NW

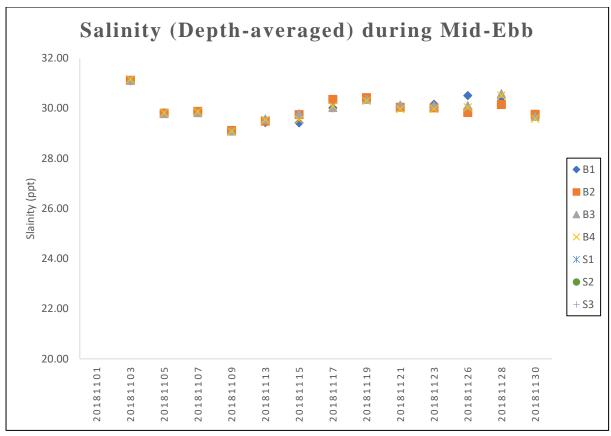
Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 2	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
17	20190228	Cloudy	Light	Mid-Flood	В	10	13:05	9.16	8.54	30.74	20.2	4.67	4	113	0.37	NW
17	20190228	Cloudy	Light	Mid-Flood	В	10	13:05	9.17	8.16	31.45	20.1	4.84	5	113	0.35	NW
I7	20190228	Cloudy	Light	Mid-Flood	M	5.5	13:06	9.1	8.49	31.08	20.2	3.28	6	113	0.39	NW
I7	20190228	Cloudy	Light	Mid-Flood	M	5.5	13:06	9.25	8.21	31.55	20.1	3.72	5	113	0.41	NW
I7	20190228	Cloudy	Light	Mid-Flood	S	1	13:07	9.05	8.18	31.42	20.2	2.9	4	113	0.43	NW
I7	20190228	Cloudy	Light	Mid-Flood	S	1	13:07	9.16	8.28	31.42	20.2	3	4	114	0.42	NW
18	20190228	Cloudy	Light	Mid-Flood	В	10.3	13:00	9.1	8.31	30.23	20.1	4.52	4	112	0.35	NW
18	20190228	Cloudy	Light	Mid-Flood	В	10.3	13:00	9.2	8.53	31.59	20.2	4.76	5	112	0.33	NW
18	20190228	Cloudy	Light	Mid-Flood	M	5.7	13:01	9.03	8.33	30.08	20.1	3.56	2	113	0.42	NW
18	20190228	Cloudy	Light	Mid-Flood	M	5.7	13:01	9.2	8.3	31.67	20.1	3.74	2	113	0.44	NW
I8	20190228	Cloudy	Light	Mid-Flood	S	1	13:02	9.19	8.49	30.61	20.1	2.89	2	112	0.36	NW
18	20190228	Cloudy	Light	Mid-Flood	S	1	13:02	9.19	8.15	30.81	20.2	2.99	3	113	0.36	NW
19	20190228	Cloudy	Light	Mid-Flood	В	10.6	12:55	9.02	8.24	31.89	20.2	4.93	4	112	0.44	NW
19	20190228	Cloudy	Light	Mid-Flood	В	10.6	12:55	9.25	8.33	31.49	20.2	4.46	3	112	0.46	NW
19	20190228	Cloudy	Light	Mid-Flood	M	5.8	12:56	9.08	8.41	31.63	20.1	3.61	4	112	0.35	NW
19	20190228	Cloudy	Light	Mid-Flood	M	5.8	12:56	9.08	8.15	30.83	20.2	3.56	4	112	0.34	NW
19	20190228	Cloudy	Light	Mid-Flood	S	1	12:57	9.16	8.42	30.13	20.2	2.97	2	112	0.38	NW
19	20190228	Cloudy	Light	Mid-Flood	S	1	12:57	9.13	8.22	31.86	20.1	2.77	2	112	0.36	NW
I10	20190228	Cloudy	Light	Mid-Flood	В	9.6	12:50	9.27	8.16	30.5	20.1	4.47	4	113	0.41	NW
I10	20190228	Cloudy	Light	Mid-Flood	В	9.6	12:50	9.1	8.55	30.88	20.2	4.71	4	112	0.39	NW
I10	20190228	Cloudy	Light	Mid-Flood	M	5.3	12:51	9.21	8.16	30.15	20.2	3.86	5	112	0.43	NW
I10	20190228	Cloudy	Light	Mid-Flood	M	5.3	12:51	9.04	8.18	31.63	20.2	3.8	4	112	0.43	NW
I10	20190228	Cloudy	Light	Mid-Flood	S	1	12:52	9.04	8.5	30.33	20.1	2.84	5	112	0.39	NW
I10	20190228	Cloudy	Light	Mid-Flood	S	1	12:52	9.02	8.32	30.14	20.1	2.95	6	112	0.38	NW
UC1	20190228	Cloudy	Light	Mid-Ebb	В	8.8	16:55	9.09	8.31	30.9	20.2	4.78	7	112	0.39	SE
UC1	20190228	Cloudy	Light	Mid-Ebb	В	8.8	16:55	9.25	8.3	31.69	20.1	4.37	6	112	0.39	SE
UC1	20190228	Cloudy	Light	Mid-Ebb	M	4.9	16:56	9.12	8.49	30.36	20.2	3.58	6	112	0.43	SE
UC1	20190228	Cloudy	Light	Mid-Ebb	M	4.9	16:56	9.16	8.28	31.58	20.1	3.83	6	112	0.41	SE
UC1	20190228	Cloudy	Light	Mid-Ebb	S	1	16:57	9.1	8.37	30.67	20.1	2.89	3	112	0.36	SE
UC1	20190228	Cloudy	Light	Mid-Ebb	S	1	16:57	9.12	8.5	30.44	20.2	2.88	4	112	0.36	SE
UC2	20190228	Cloudy	Light	Mid-Ebb	В	9.2	17:02	9.07	8.27	31.89	20.1	4.38	2	112	0.42	SE
UC2	20190228	Cloudy	Light	Mid-Ebb	В	9.2	17:02	9.27	8.53	30.98	20.2	4.37	2	113	0.4	SE

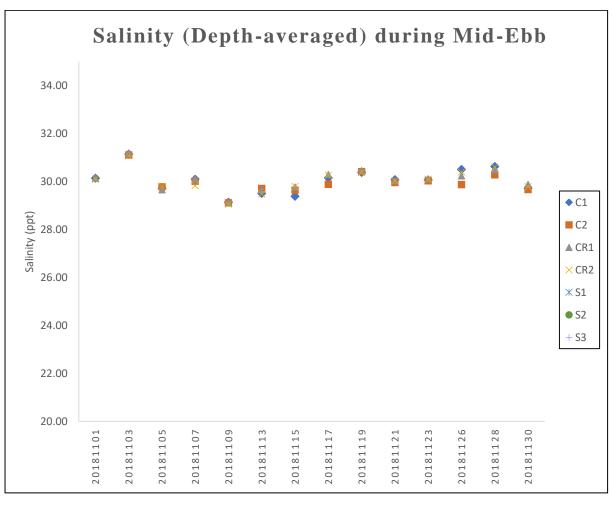
Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
UC2	20190228	Cloudy	Light	Mid-Ebb	M	5.1	17:03	9.06	8.14	30.47	20.1	3.72	3	113	0.41	SE
UC2	20190228	Cloudy	Light	Mid-Ebb	M	5.1	17:03	9.04	8.43	30.56	20.2	3.3	3	112	0.39	SE
UC2	20190228	Cloudy	Light	Mid-Ebb	S	1	17:04	9.13	8.24	30.18	20.2	3.06	4	111	0.44	SE
UC2	20190228	Cloudy	Light	Mid-Ebb	S	1	17:04	9.13	8.3	30.87	20.2	3.04	3	112	0.45	SE
I1	20190228	Cloudy	Light	Mid-Ebb	В	9.4	17:10	9.19	8.14	30.42	20.2	4.22	2	113	0.39	SE
I1	20190228	Cloudy	Light	Mid-Ebb	В	9.4	17:10	9.26	8.44	31.19	20.2	4.69	3	113	0.39	SE
I1	20190228	Cloudy	Light	Mid-Ebb	M	5.2	17:11	9.27	8.42	31.73	20.1	3.75	3	112	0.4	SE
I1	20190228	Cloudy	Light	Mid-Ebb	M	5.2	17:11	9.03	8.3	30.9	20.2	3.48	3	112	0.38	SE
I1	20190228	Cloudy	Light	Mid-Ebb	S	1	17:12	9.23	8.38	30.42	20.2	2.81	4	112	0.42	SE
I1	20190228	Cloudy	Light	Mid-Ebb	S	1	17:12	9.15	8.15	30.86	20.1	2.79	3	113	0.44	SE
I2	20190228	Cloudy	Light	Mid-Ebb	В	8.9	17:16	9.09	8.57	30.43	20.2	4.29	4	112	0.42	SE
I2	20190228	Cloudy	Light	Mid-Ebb	В	8.9	17:16	9.25	8.43	31.89	20.1	4.22	4	112	0.44	SE
I2	20190228	Cloudy	Light	Mid-Ebb	M	5	17:17	9.16	8.55	30.35	20.2	3.63	3	112	0.43	SE
I2	20190228	Cloudy	Light	Mid-Ebb	M	5	17:17	9.23	8.43	31.43	20.1	3.42	2	113	0.41	SE
I2	20190228	Cloudy	Light	Mid-Ebb	S	1	17:18	9.25	8.29	30.84	20.2	2.83	2	112	0.39	SE
I2	20190228	Cloudy	Light	Mid-Ebb	S	1	17:18	9.18	8.13	30.57	20.2	2.82	2	112	0.4	SE
I3	20190228	Cloudy	Light	Mid-Ebb	В	8.4	17:20	9.26	8.21	31.15	20.2	4.9	3	113	0.42	SE
I3	20190228	Cloudy	Light	Mid-Ebb	В	8.4	17:20	9.06	8.53	30.88	20.1	4.74	2	112	0.4	SE
I3	20190228	Cloudy	Light	Mid-Ebb	M	4.7	17:21	9.26	8.52	31.93	20.1	3.46	3	113	0.36	SE
I3	20190228	Cloudy	Light	Mid-Ebb	M	4.7	17:21	9.14	8.32	31.21	20.2	3.5	3	112	0.36	SE
I3	20190228	Cloudy	Light	Mid-Ebb	S	1	17:22	9.07	8.45	31.53	20.2	2.81	2	112	0.41	SE
I3	20190228	Cloudy	Light	Mid-Ebb	S	1	17:22	9.18	8.24	30.44	20.1	2.92	2	113	0.4	SE
I4	20190228	Cloudy	Light	Mid-Ebb	В	9.8	17:25	9.17	8.56	31.82	20.2	4.48	3	113	0.45	SE
I4	20190228	Cloudy	Light	Mid-Ebb	В	9.8	17:25	9.22	8.36	30.35	20.1	4.24	2	112	0.43	SE
I4	20190228	Cloudy	Light	Mid-Ebb	M	5.4	17:26	9.14	8.56	30.24	20.1	3.72	3	113	0.45	SE
I4	20190228	Cloudy	Light	Mid-Ebb	M	5.4	17:26	9.22	8.15	30.61	20.2	3.36	4	112	0.45	SE
I 4	20190228	Cloudy	Light	Mid-Ebb	S	1	17:27	9.19	8.3	31.62	20.1	3.04	4	112	0.41	SE
I4	20190228	Cloudy	Light	Mid-Ebb	S	1	17:27	9.1	8.26	31.64	20.2	2.94	4	113	0.39	SE
I5	20190228	Cloudy	Light	Mid-Ebb	В	8.8	17:30	9.2	8.49	30.13	20.1	4.44	5	112	0.44	SE
I5	20190228	Cloudy	Light	Mid-Ebb	В	8.8	17:30	9.09	8.17	31.86	20.1	4.89	5	113	0.46	SE
I5	20190228	Cloudy	Light	Mid-Ebb	M	4.9	17:31	9.12	8.23	31.83	20.2	3.79	5	112	0.42	SE
I5	20190228	Cloudy	Light	Mid-Ebb	M	4.9	17:31	9.23	8.36	31.6	20.2	3.62	4	112	0.41	SE

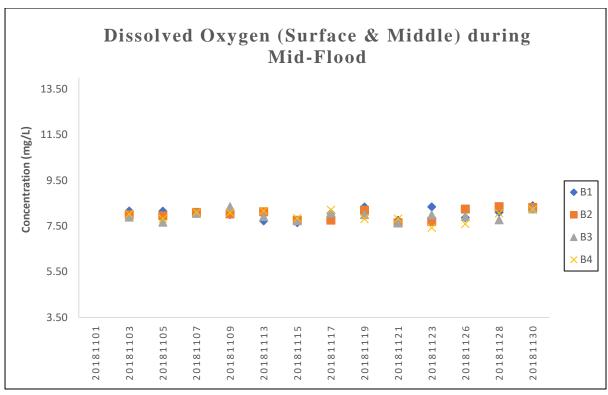
Location	Date	Weather	Sea Condition	Tidal	Water Level _{Note 1}	Depth (m)	Time (hh:mm)	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU)	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity (m/s)	Direction in NESW
I5	20190228	Cloudy	Light	Mid-Ebb	S	1	17:32	9.06	8.49	31.36	20.1	2.84	5	113	0.35	SE
I5	20190228	Cloudy	Light	Mid-Ebb	S	1	17:32	9.03	8.18	31.33	20.1	2.93	5	113	0.35	SE
I6	20190228	Cloudy	Light	Mid-Ebb	В	9.5	18:00	9.22	8.5	31.4	20.1	4.32	3	112	0.39	SE
I6	20190228	Cloudy	Light	Mid-Ebb	В	9.5	18:00	9.25	8.42	30.51	20.2	4.92	3	112	0.4	SE
I6	20190228	Cloudy	Light	Mid-Ebb	M	5.3	18:01	9.08	8.15	31.21	20.2	3.55	4	112	0.45	SE
I6	20190228	Cloudy	Light	Mid-Ebb	M	5.3	18:01	9.18	8.36	30.82	20.1	3.8	4	112	0.45	SE
I6	20190228	Cloudy	Light	Mid-Ebb	S	1	18:02	9.18	8.42	31.46	20.2	2.75	5	112	0.44	SE
I6	20190228	Cloudy	Light	Mid-Ebb	S	1	18:02	9.22	8.52	31.15	20.2	2.82	4	112	0.44	SE
I7	20190228	Cloudy	Light	Mid-Ebb	В	9.5	17:55	9.13	8.43	31.37	20.2	4.89	5	113	0.37	SE
I7	20190228	Cloudy	Light	Mid-Ebb	В	9.5	17:55	9.02	8.18	30.66	20.2	4.43	5	112	0.37	SE
I7	20190228	Cloudy	Light	Mid-Ebb	M	5.3	17:56	9.19	8.44	30.93	20.2	3.78	3	112	0.45	SE
I7	20190228	Cloudy	Light	Mid-Ebb	M	5.3	17:56	9.09	8.28	30.51	20.2	3.67	2	112	0.44	SE
I7	20190228	Cloudy	Light	Mid-Ebb	S	1	17:57	9.09	8.16	31.51	20.1	2.76	4	113	0.41	SE
I7	20190228	Cloudy	Light	Mid-Ebb	S	1	17:57	9.27	8.5	31.76	20.1	2.98	2	112	0.43	SE
18	20190228	Cloudy	Light	Mid-Ebb	В	9.9	17:50	9.21	8.54	30.24	20.2	4.16	7	112	0.42	SE
18	20190228	Cloudy	Light	Mid-Ebb	В	9.9	17:50	9.04	8.46	30.84	20.2	4.74	8	113	0.41	SE
18	20190228	Cloudy	Light	Mid-Ebb	M	5.5	17:51	9.06	8.39	30.26	20.1	3.78	5	112	0.4	SE
18	20190228	Cloudy	Light	Mid-Ebb	M	5.5	17:51	9.1	8.36	30.24	20.1	3.79	5	112	0.42	SE
18	20190228	Cloudy	Light	Mid-Ebb	S	1	17:52	9.08	8.19	31.01	20.2	2.74	6	113	0.44	SE
I8	20190228	Cloudy	Light	Mid-Ebb	S	1	17:52	9.05	8.37	30.56	20.1	2.92	6	112	0.43	SE
I9	20190228	Cloudy	Light	Mid-Ebb	В	9.1	17:40	9.07	8.54	31.82	20.1	4.78	2	112	0.42	SE
I9	20190228	Cloudy	Light	Mid-Ebb	В	9.1	17:40	9.25	8.57	31.51	20.1	4.19	3	112	0.42	SE
I9	20190228	Cloudy	Light	Mid-Ebb	M	5.1	17:41	9.26	8.43	31.71	20.2	3.54	5	112	0.4	SE
I 9	20190228	Cloudy	Light	Mid-Ebb	M	5.1	17:41	9.2	8.15	30.88	20.2	3.69	4	112	0.41	SE
I9	20190228	Cloudy	Light	Mid-Ebb	S	1	17:42	9.24	8.29	30.48	20.1	2.99	5	113	0.35	SE
19	20190228	Cloudy	Light	Mid-Ebb	S	1	17:42	9.21	8.14	30.88	20.1	2.88	4	111	0.33	SE
I10	20190228	Cloudy	Light	Mid-Ebb	В	9.3	17:35	9.27	8.45	31.29	20.2	4.29	7	112	0.45	SE
I10	20190228	Cloudy	Light	Mid-Ebb	В	9.3	17:35	9.13	8.37	31.54	20.2	4.41	7	112	0.43	SE
I10	20190228	Cloudy	Light	Mid-Ebb	M	5.2	17:36	9.09	8.16	30.58	20.1	3.45	4	112	0.41	SE
I10	20190228	Cloudy	Light	Mid-Ebb	M	5.2	17:36	9.2	8.28	30.83	20.1	3.59	4	113	0.43	SE
I10	20190228	Cloudy	Light	Mid-Ebb	S	1	17:37	9.14	8.3	31.39	20.2	2.81	4	113	0.34	SE
I10	20190228	Cloudy	Light	Mid-Ebb	S	1	17:37	9.19	8.45	30.68	20.1	2.85	4	112	0.36	SE

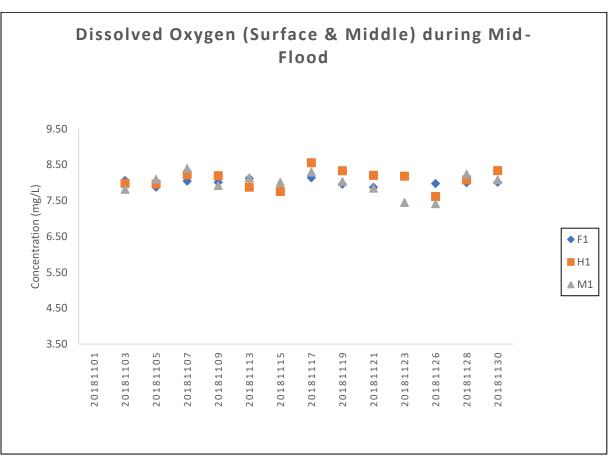

Remarks:

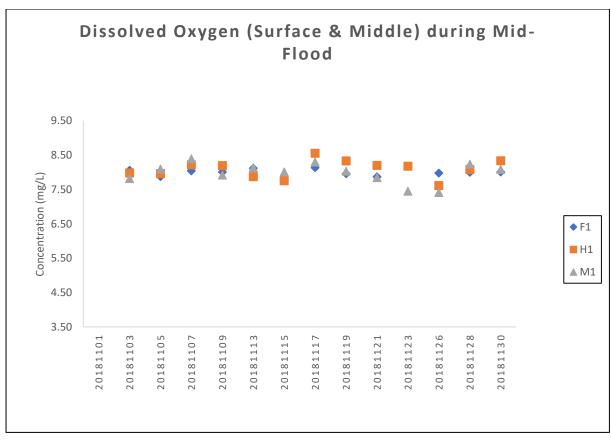

note 1: S – Surface M – Middle B – Bottom

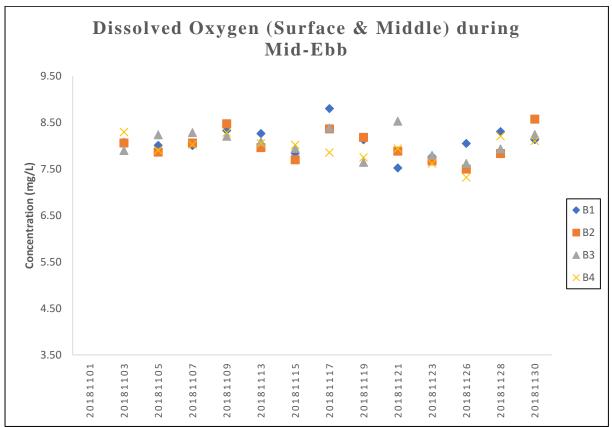

note 2: Measurements of turbidity would be rounding to 0.1 NTU for proven accuracy as per the equipment specs during utilization of data.

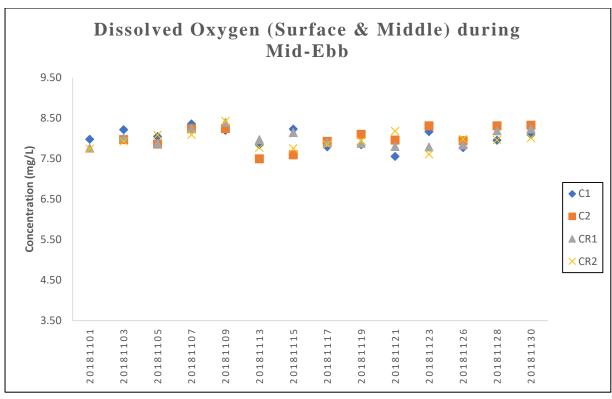

note 3: Cancelled due to leakage of container.

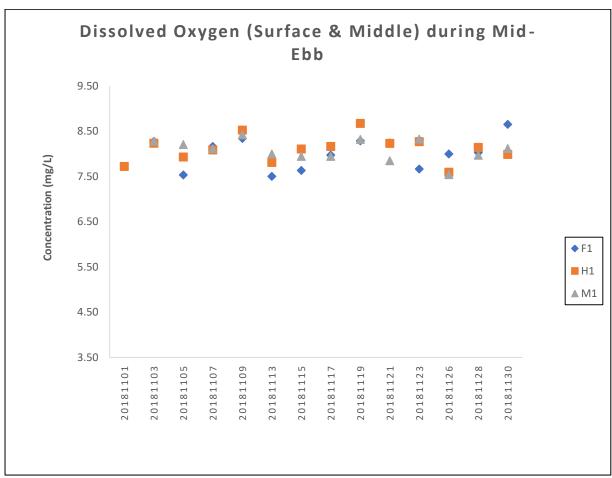

note 4: Cancelled due to mobile impact station positioning on land.

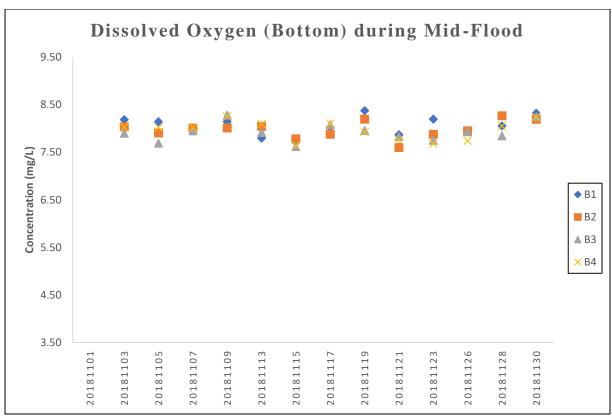


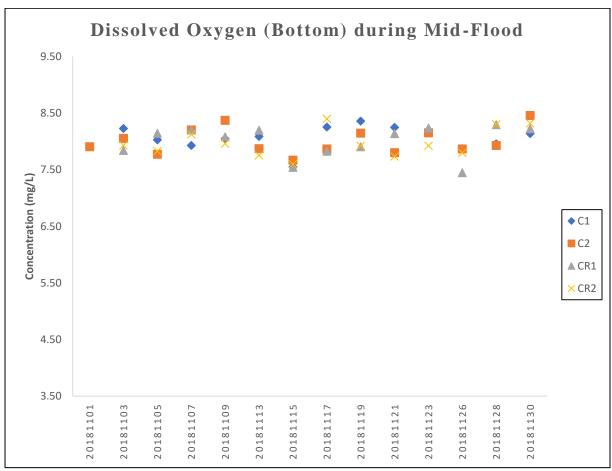


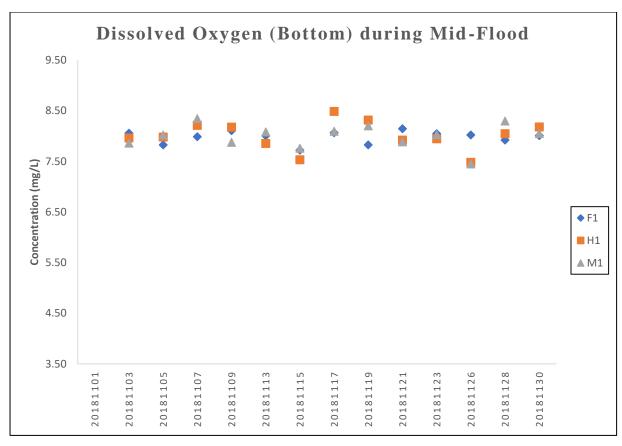


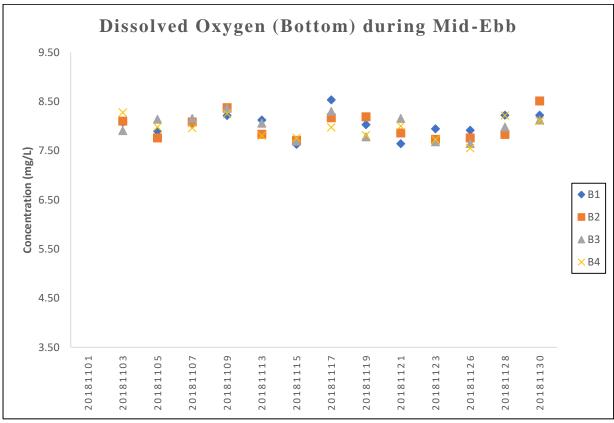


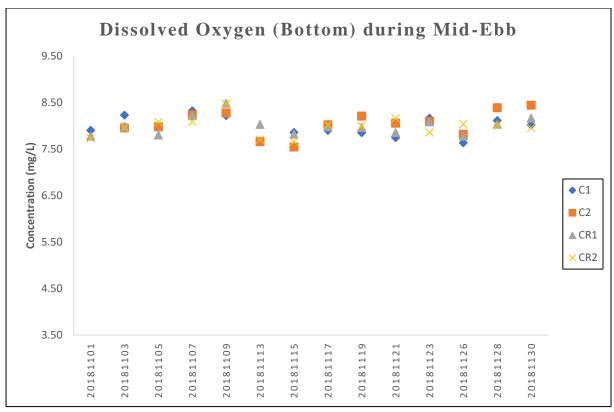


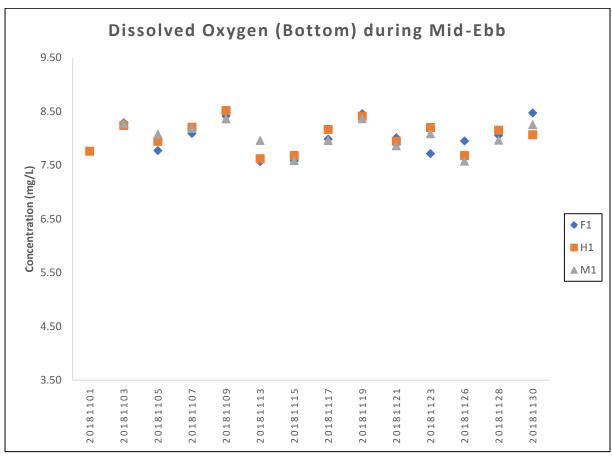


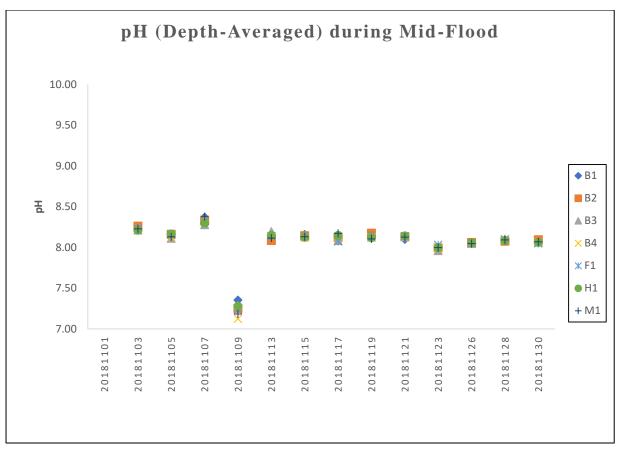


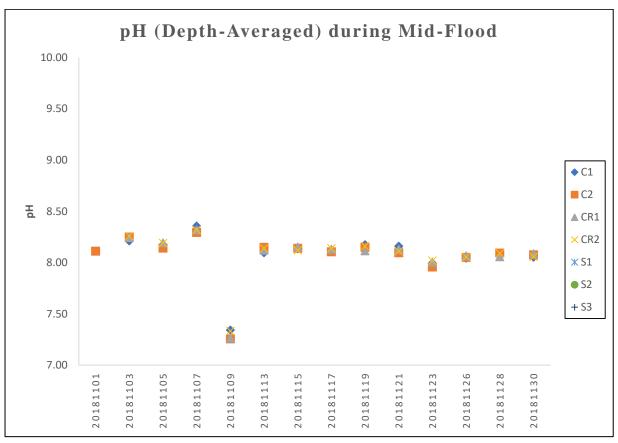


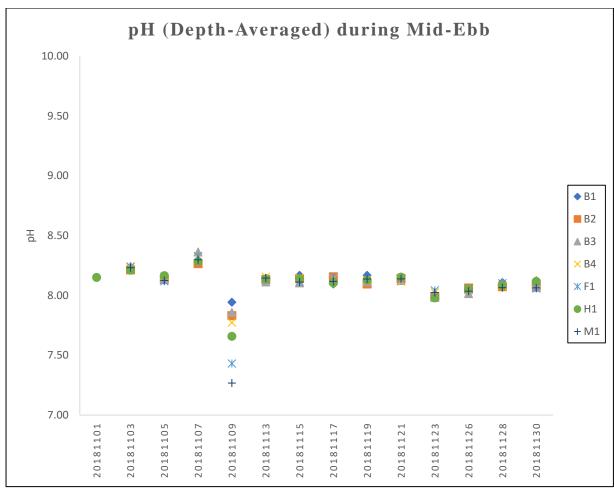


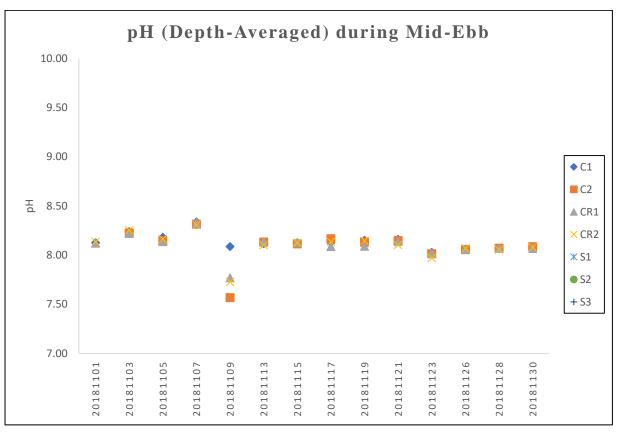


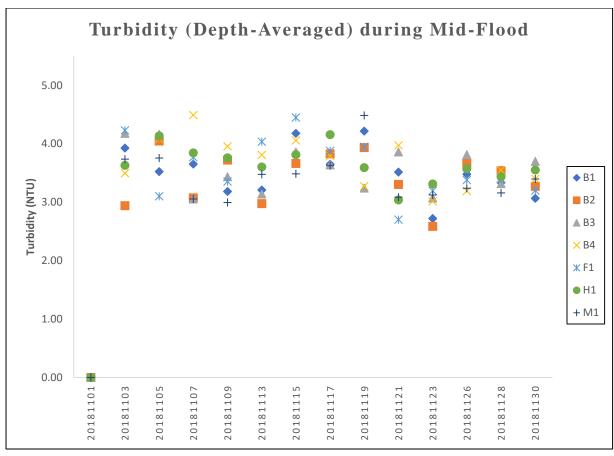


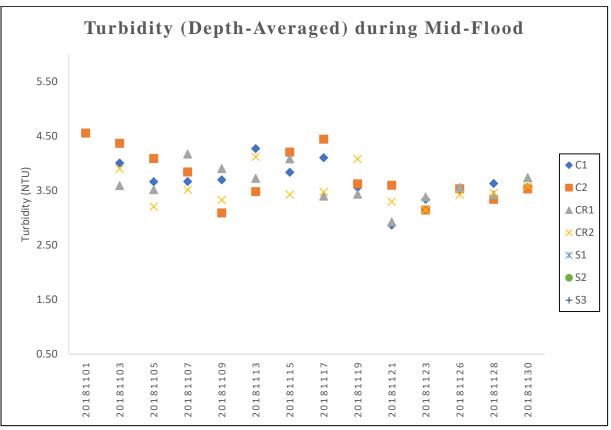


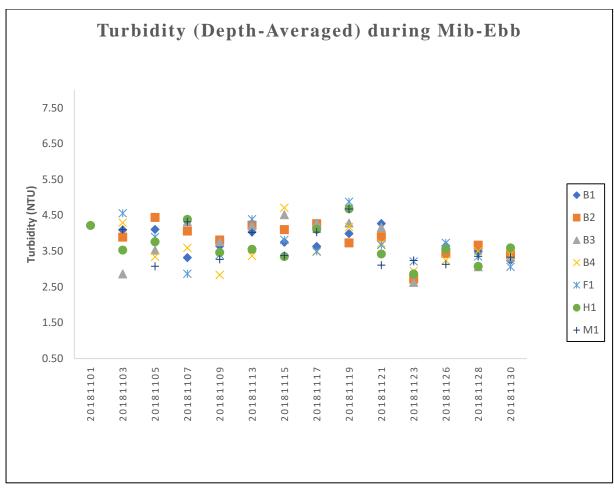


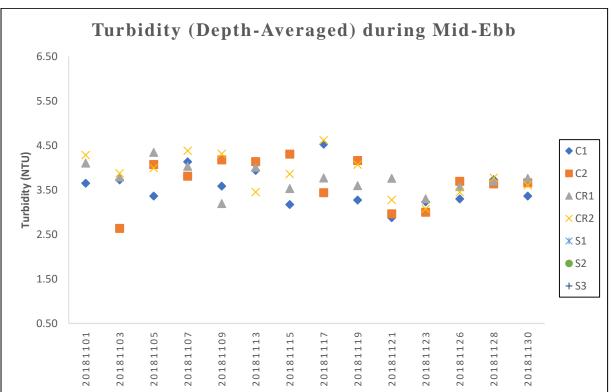


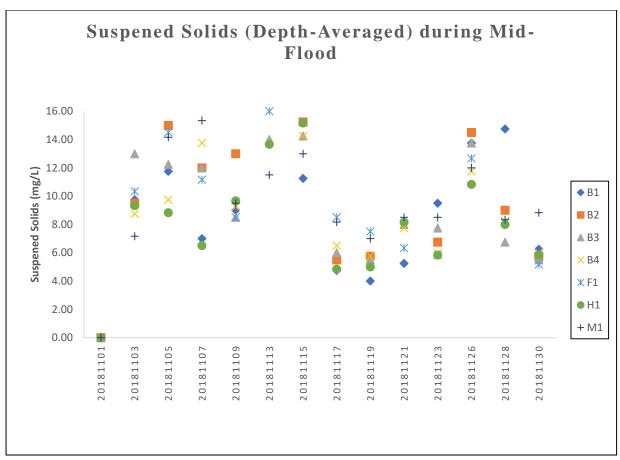


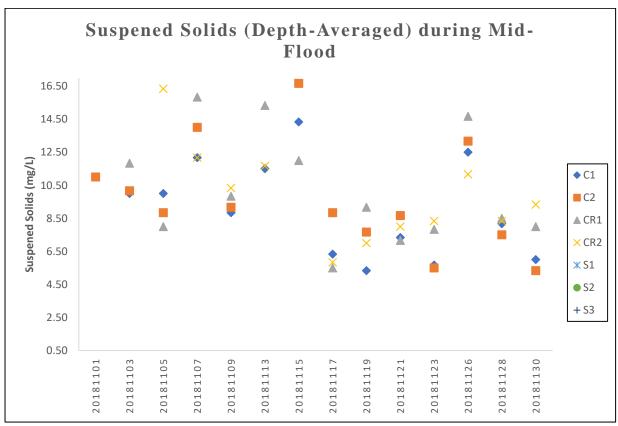


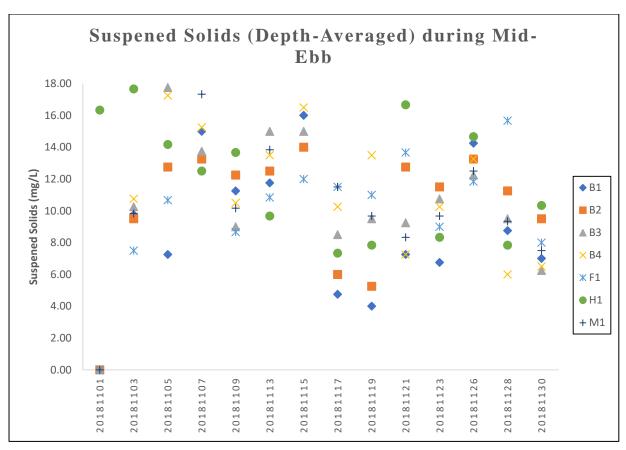


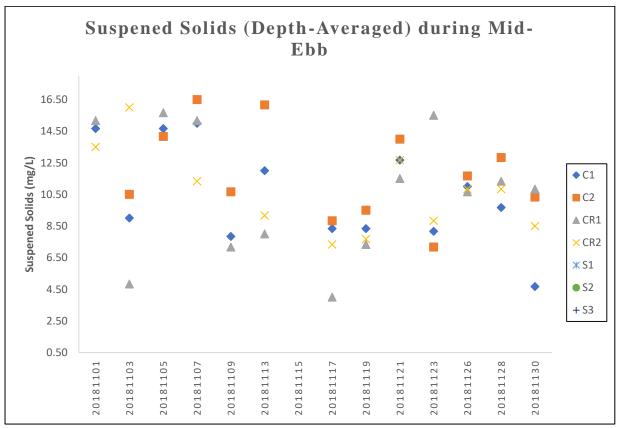


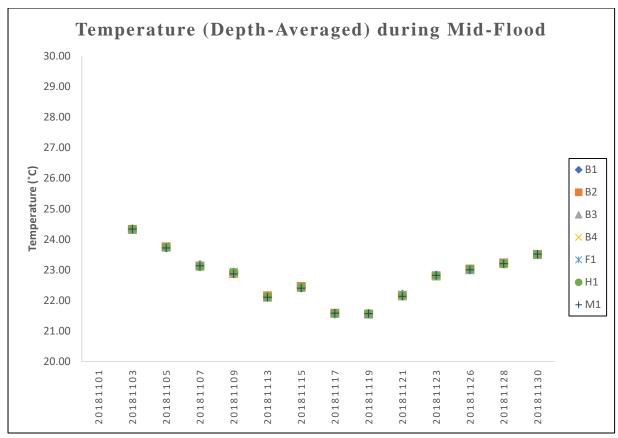


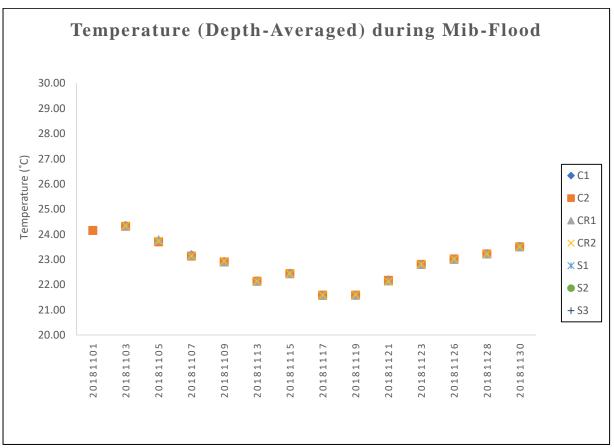


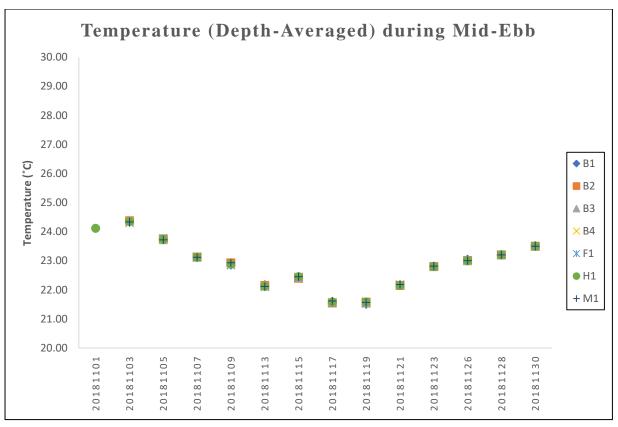


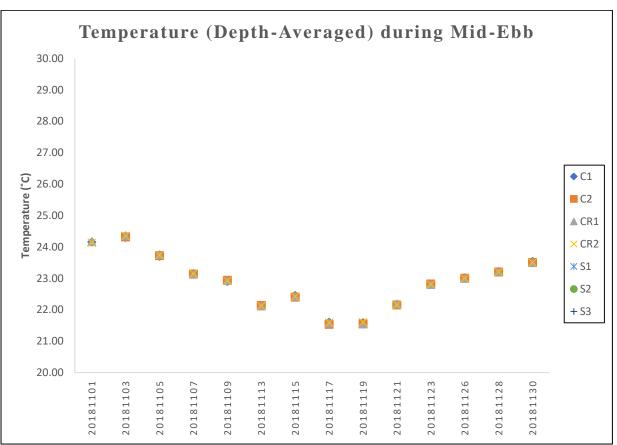


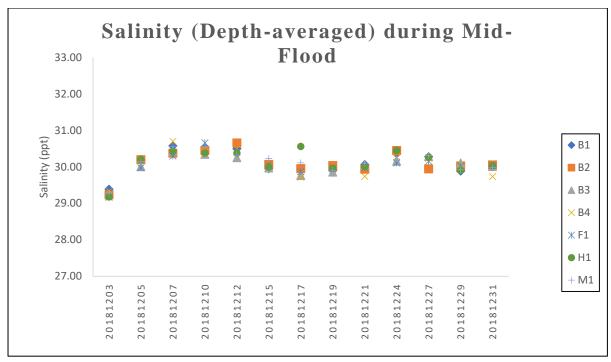


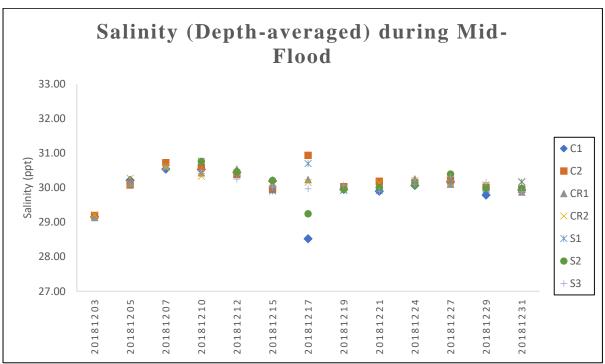


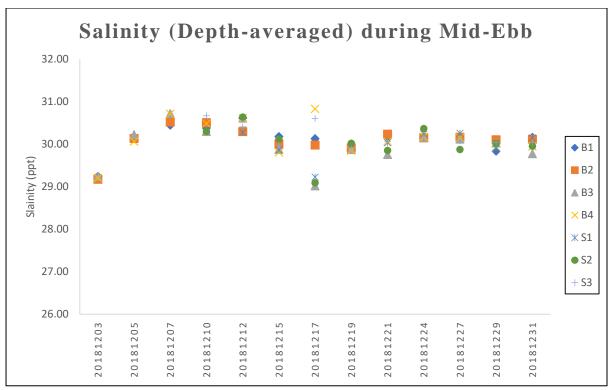


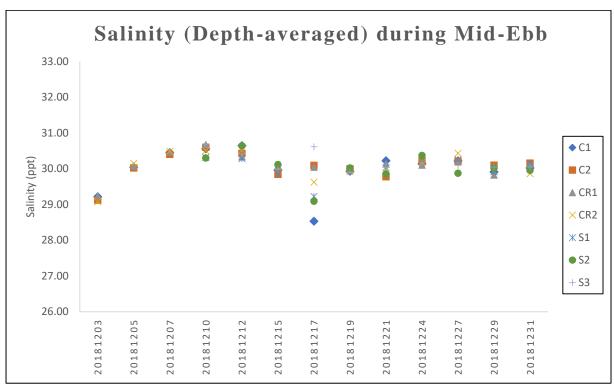


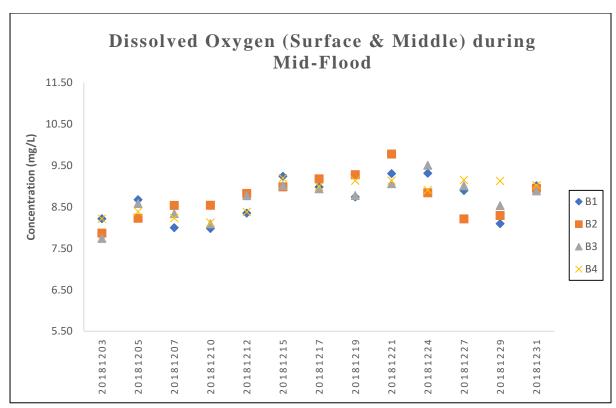


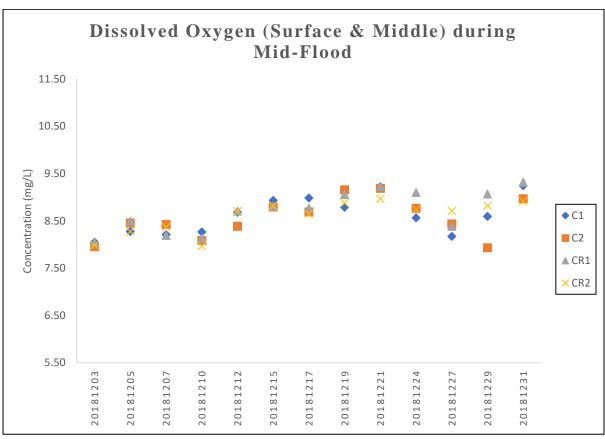


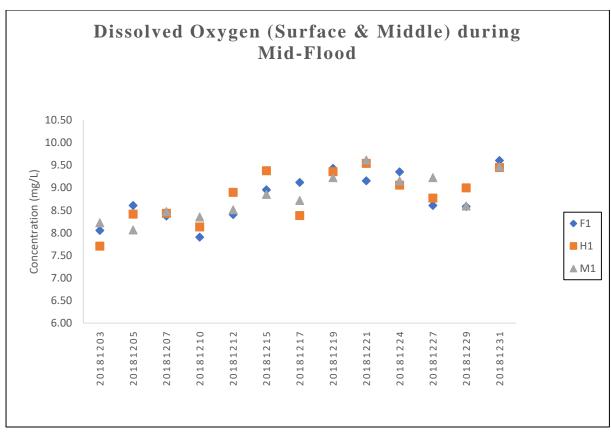

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

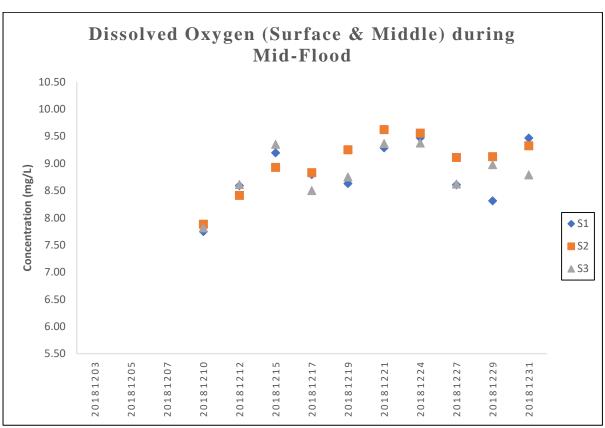


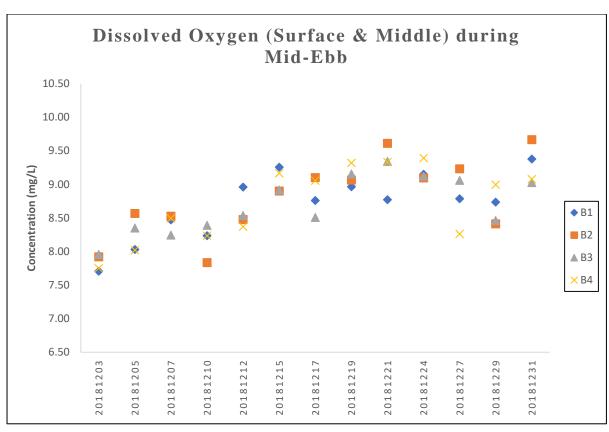


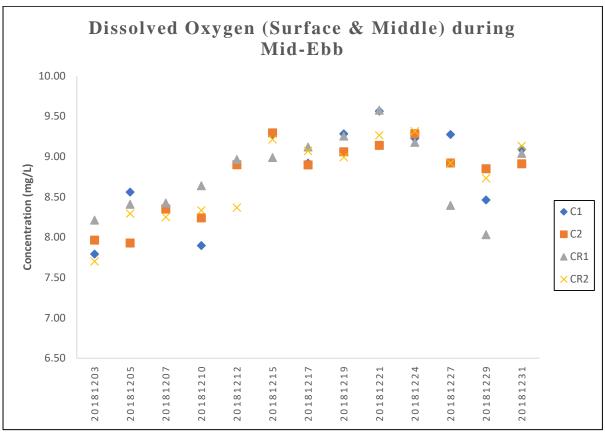

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

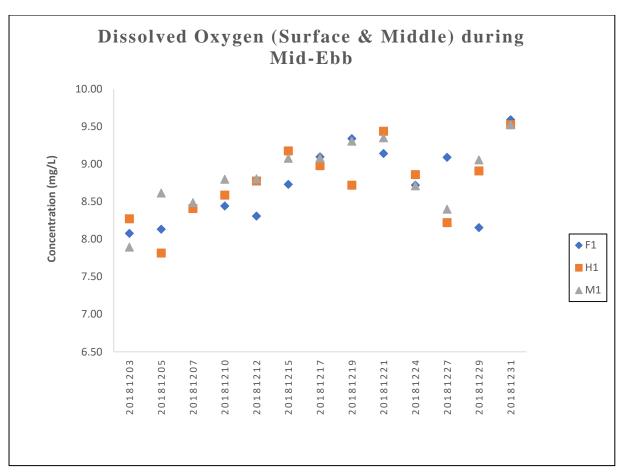


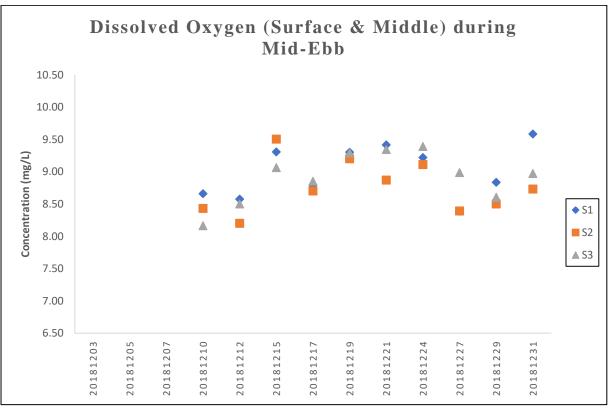


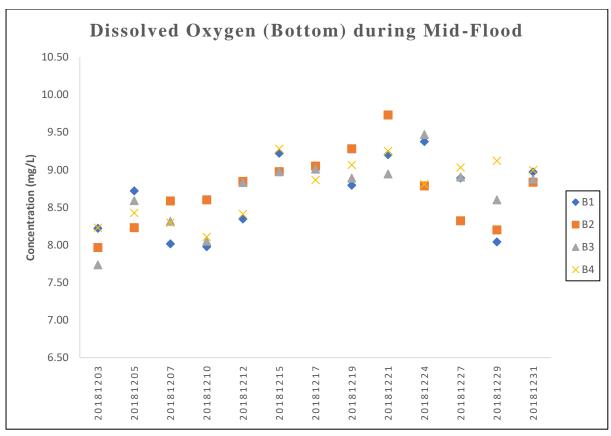


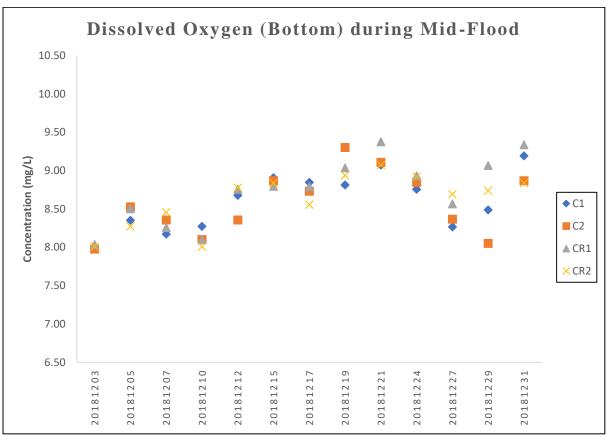


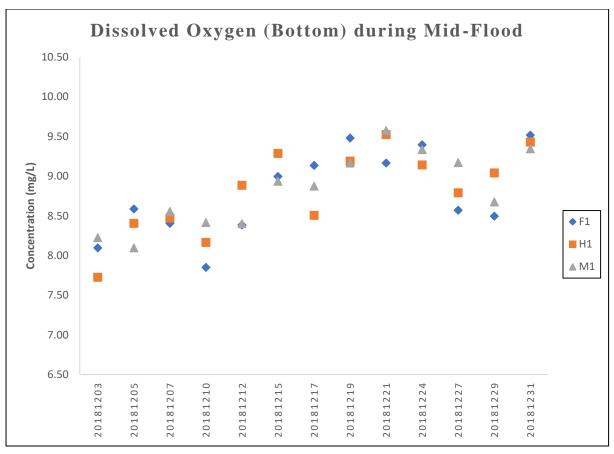


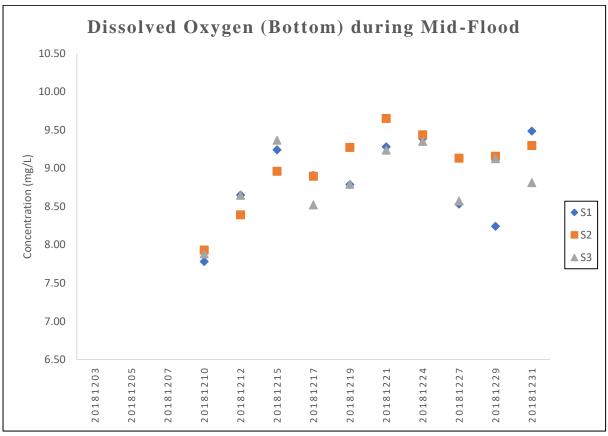


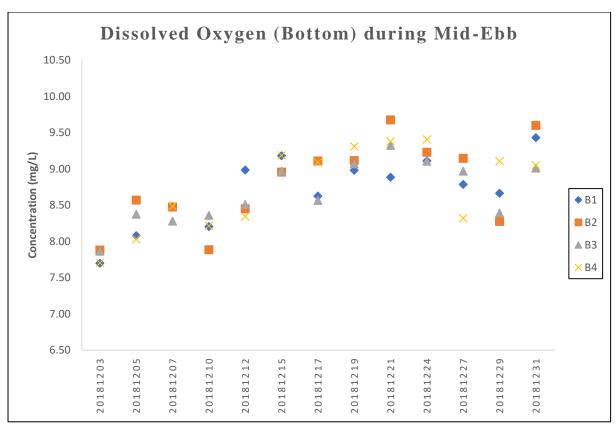


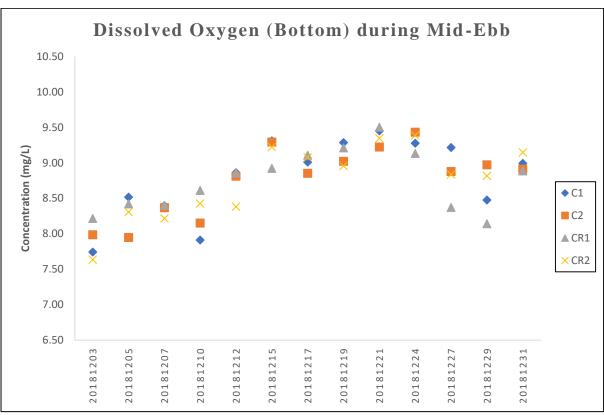


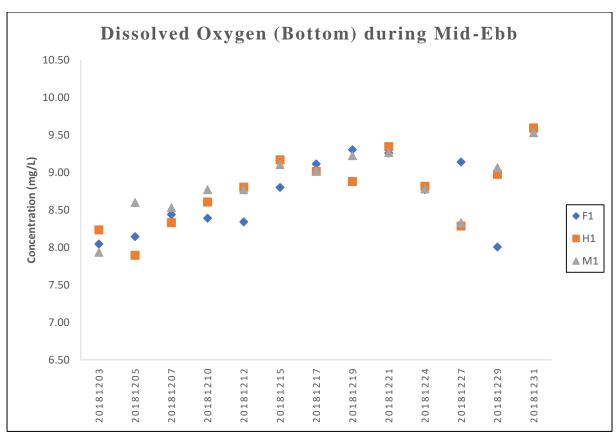


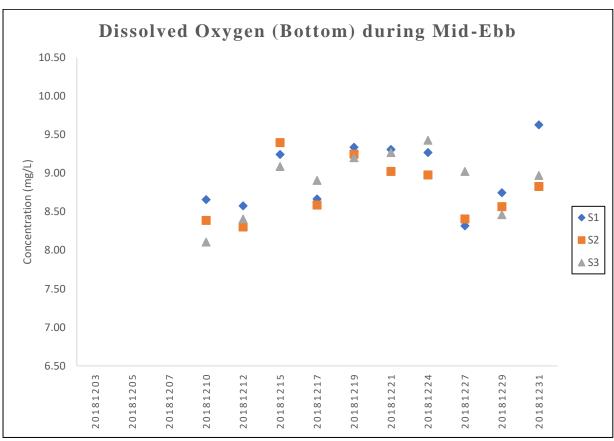


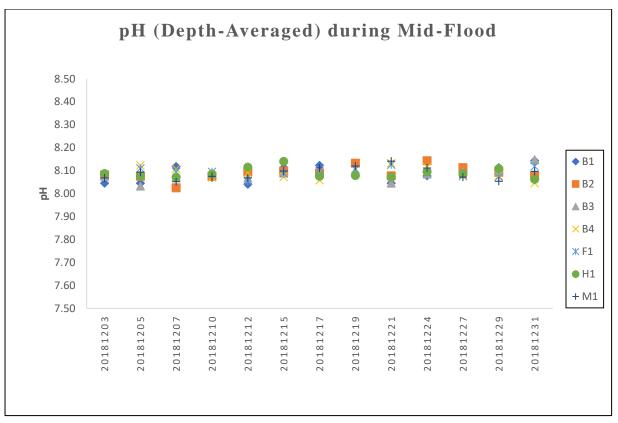


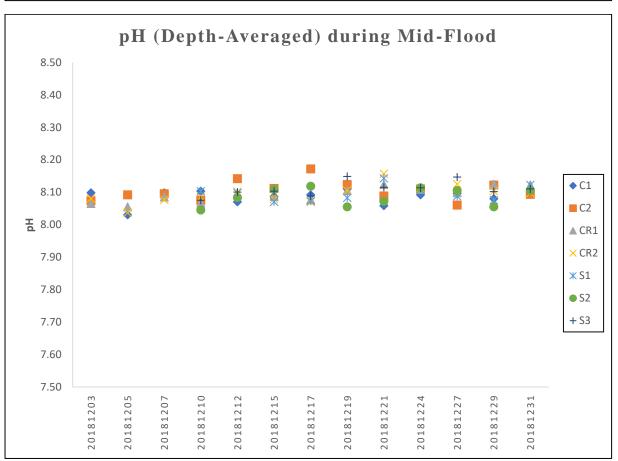


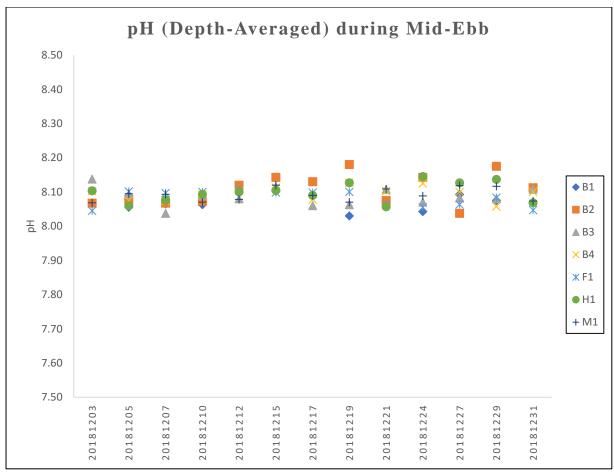


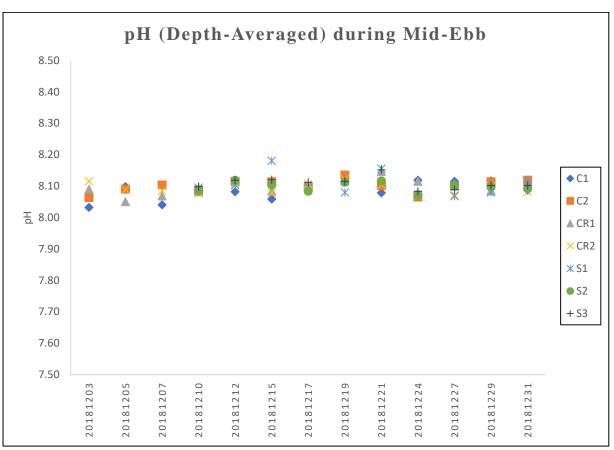




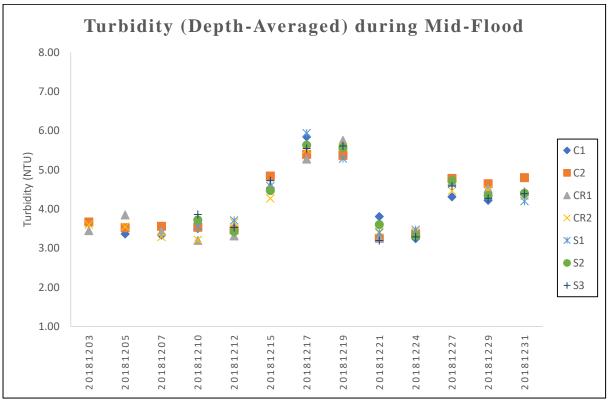


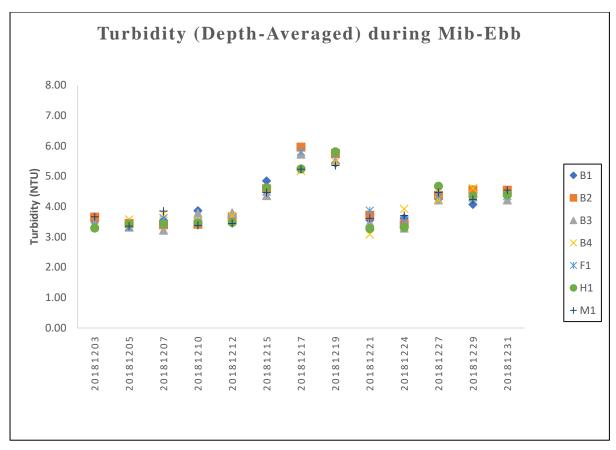


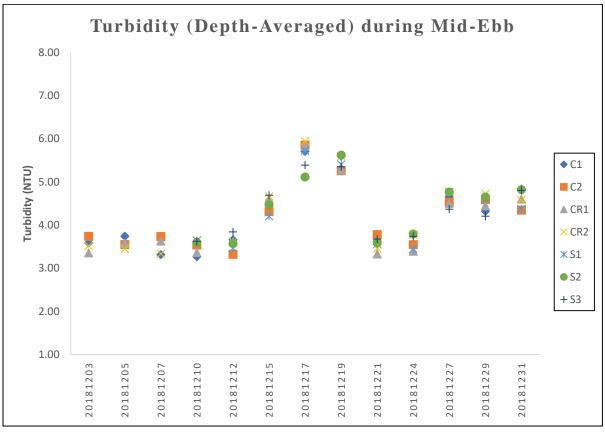


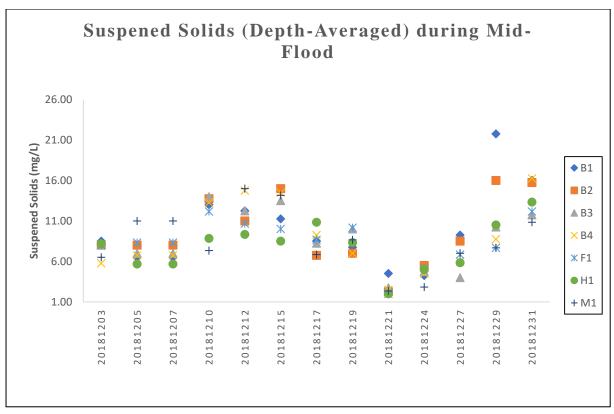


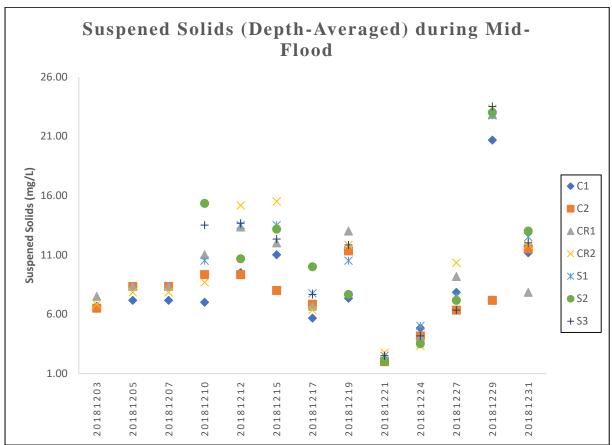


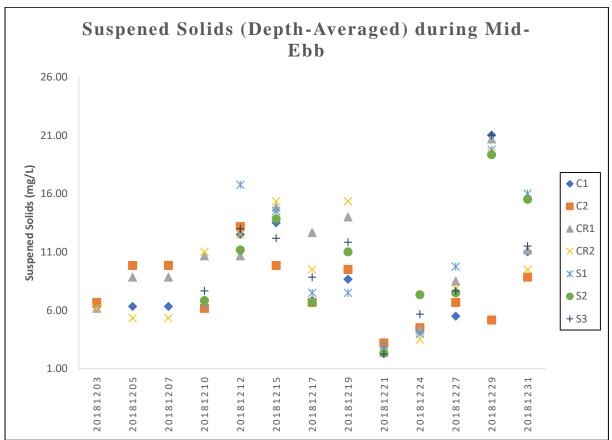


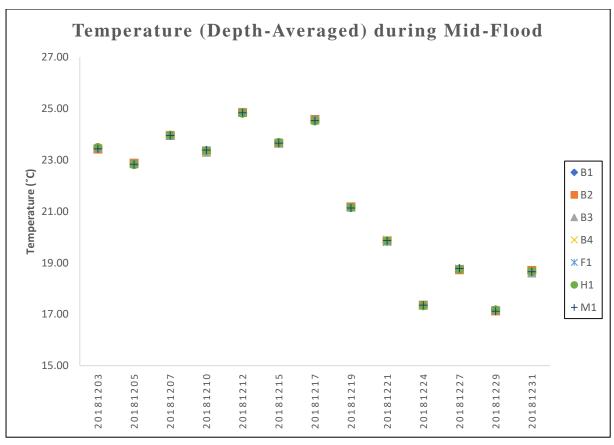


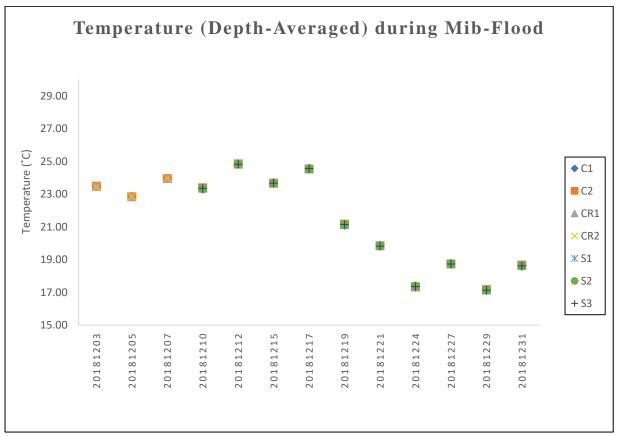


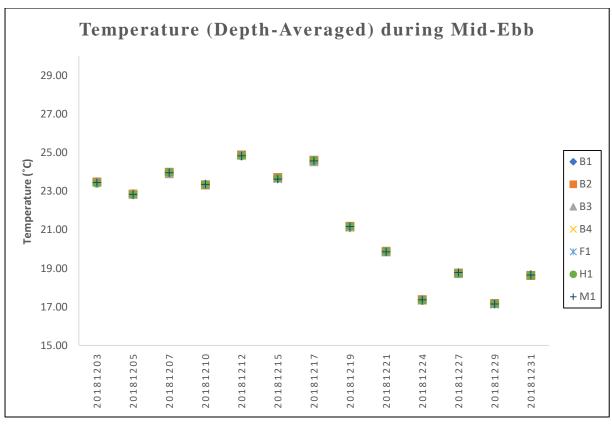


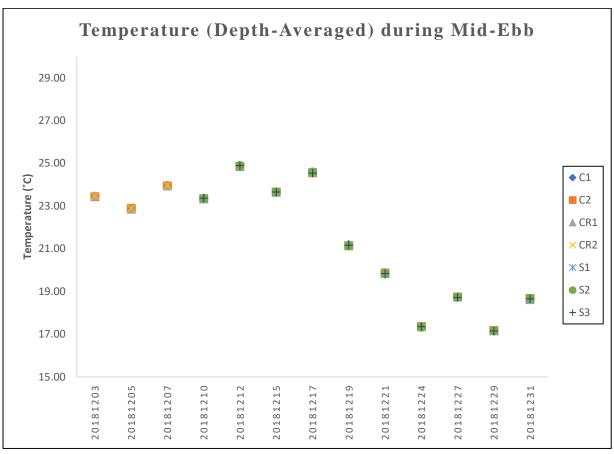


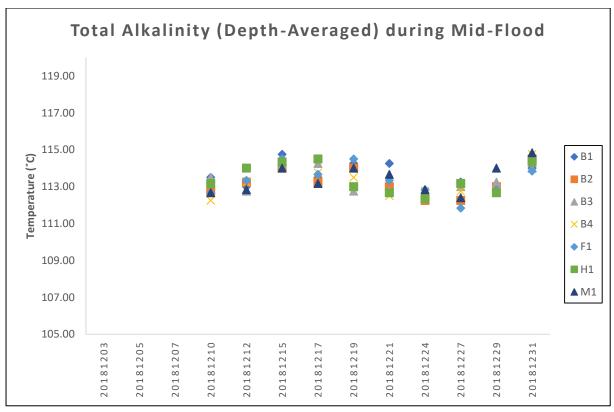


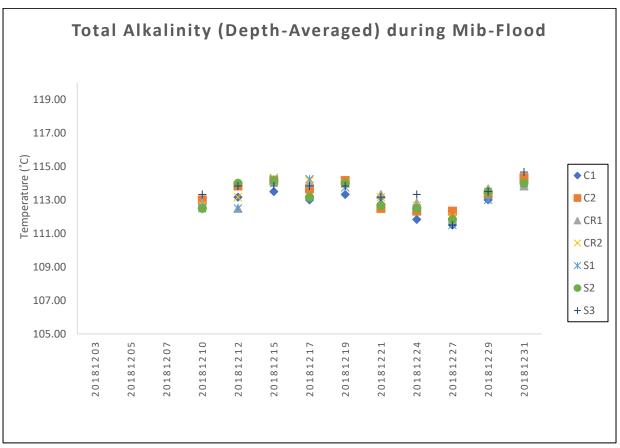


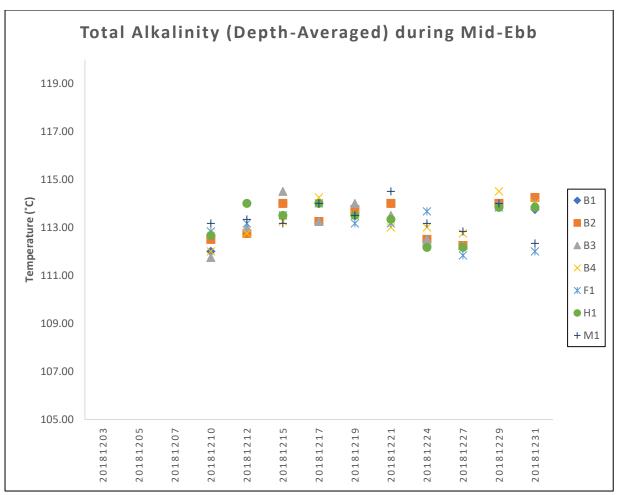


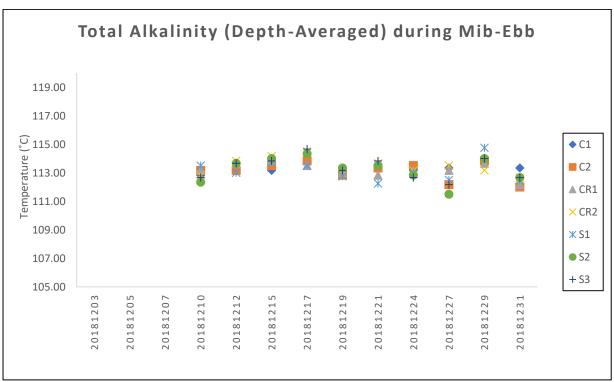


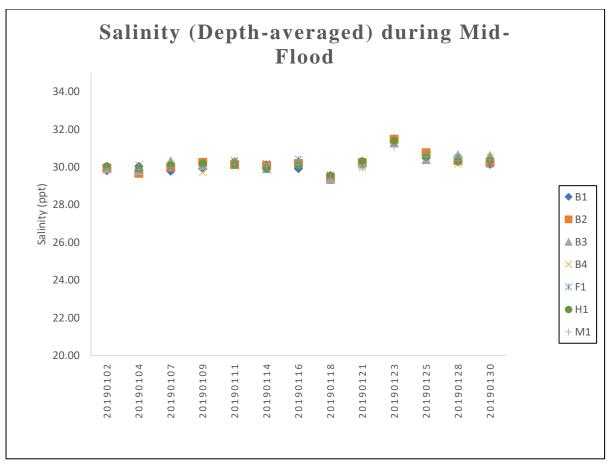


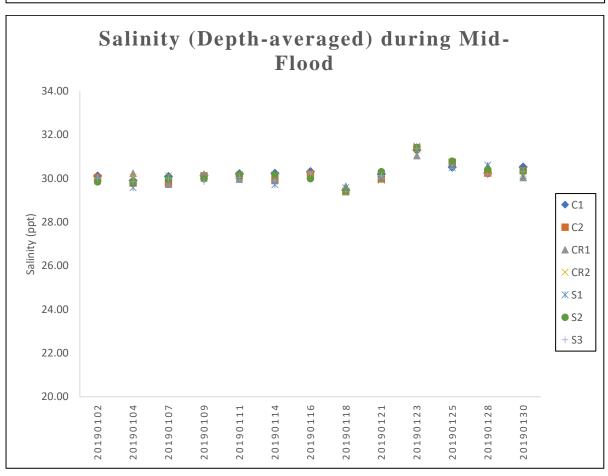


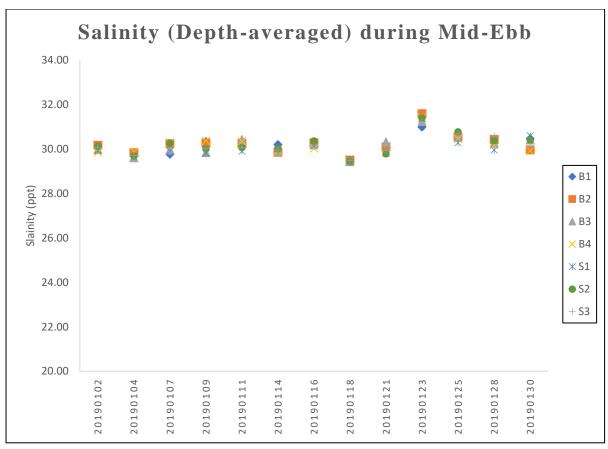

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

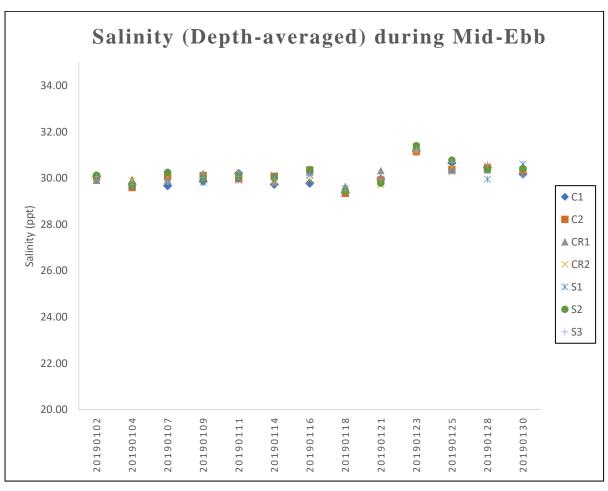


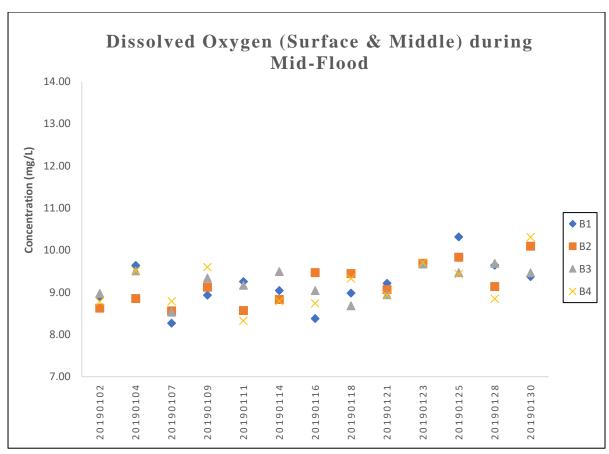

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

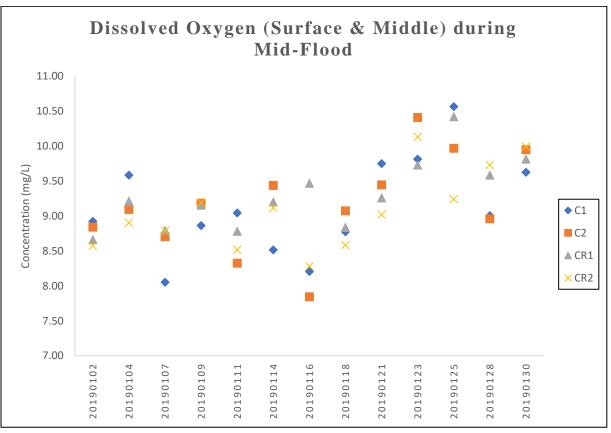


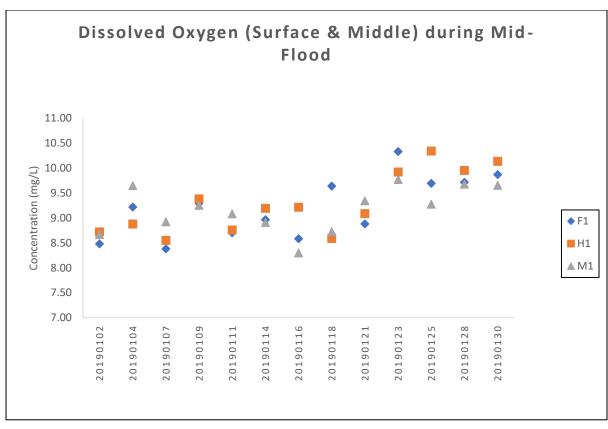

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

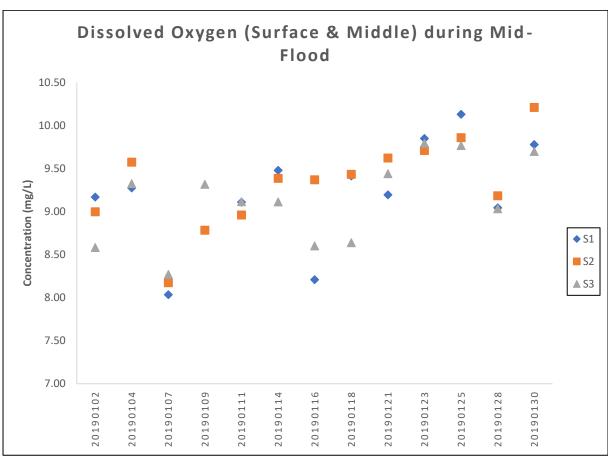


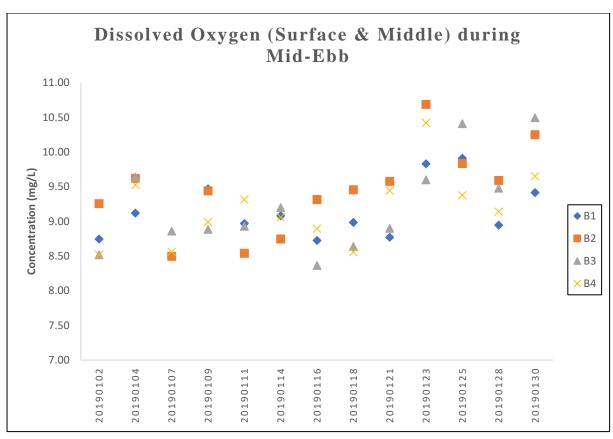


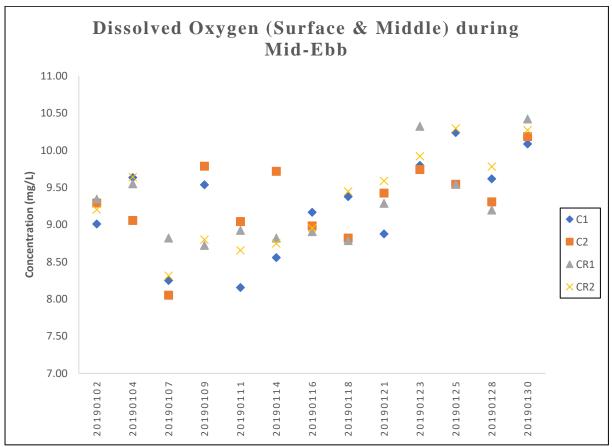

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

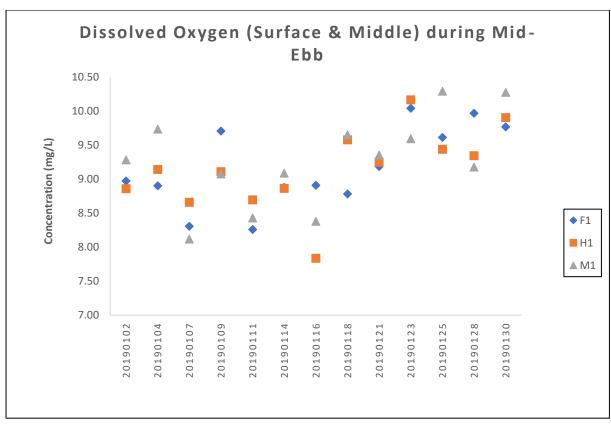


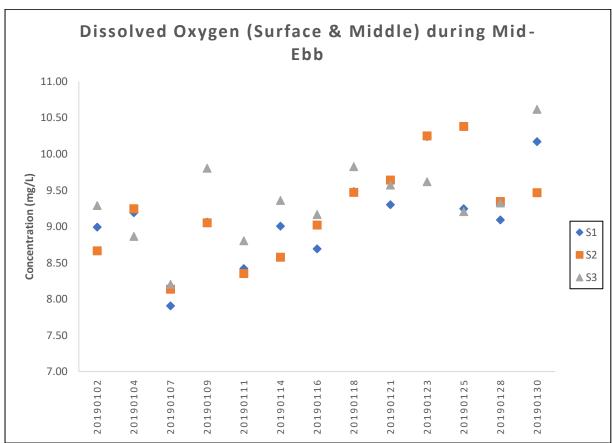


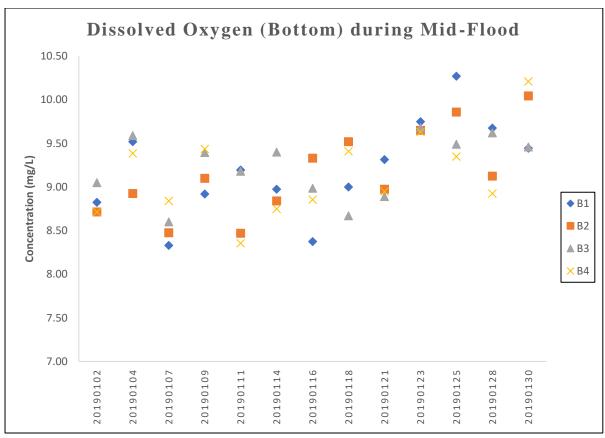


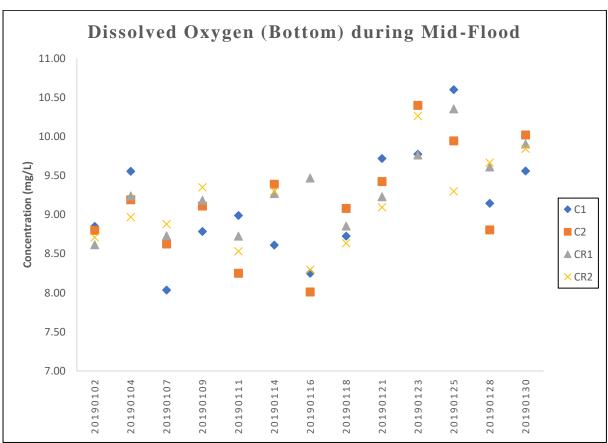


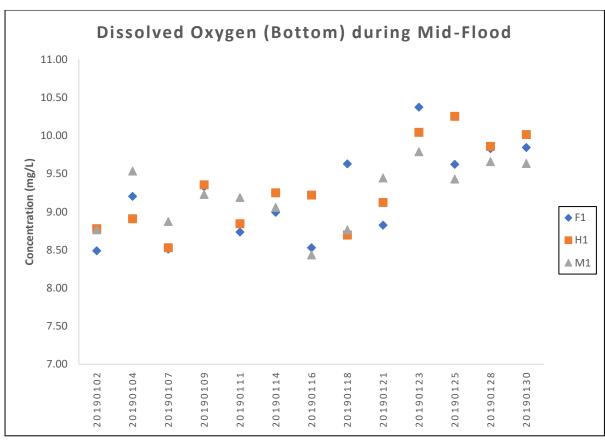


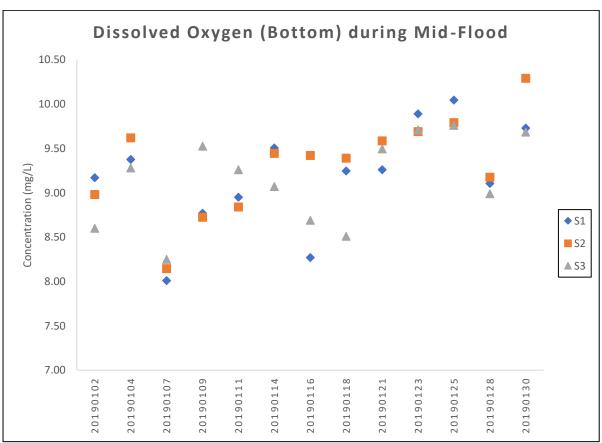


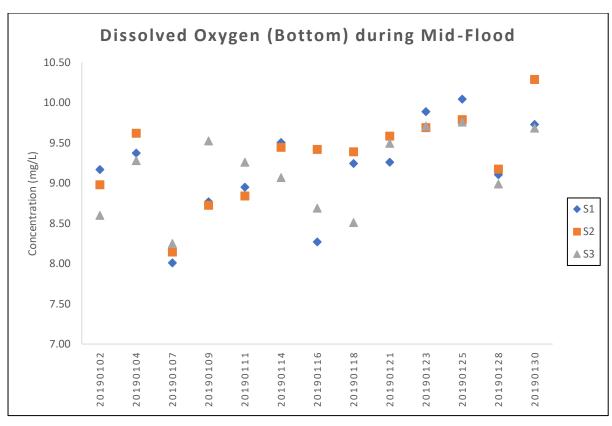


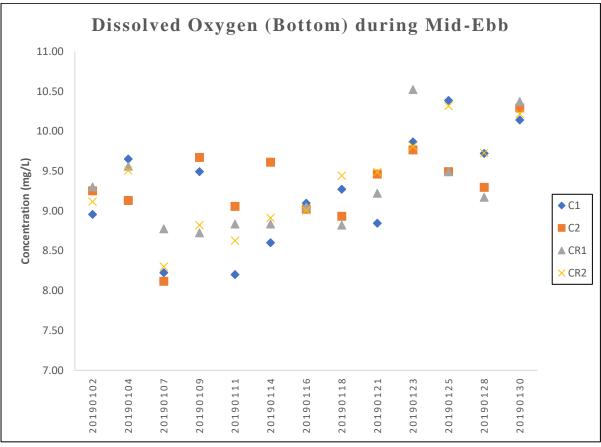


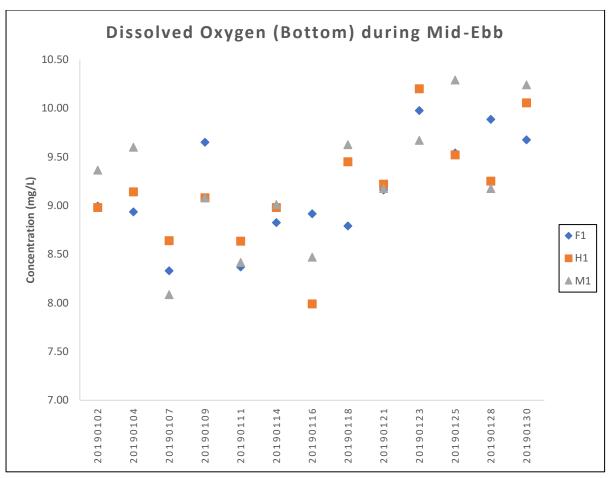


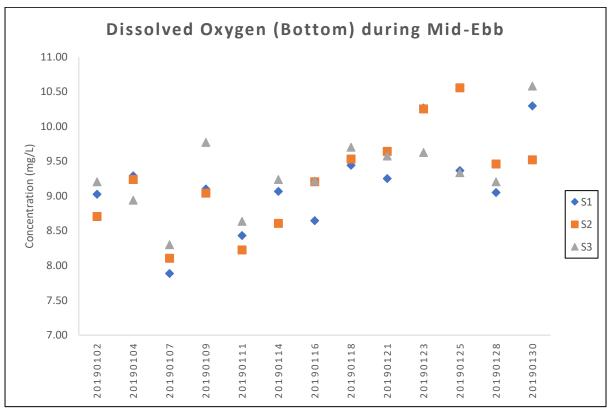


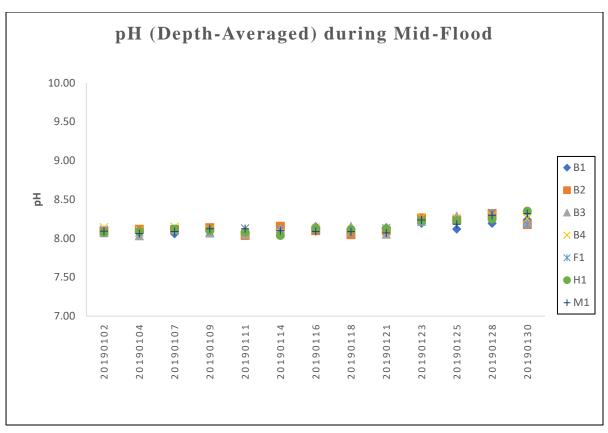


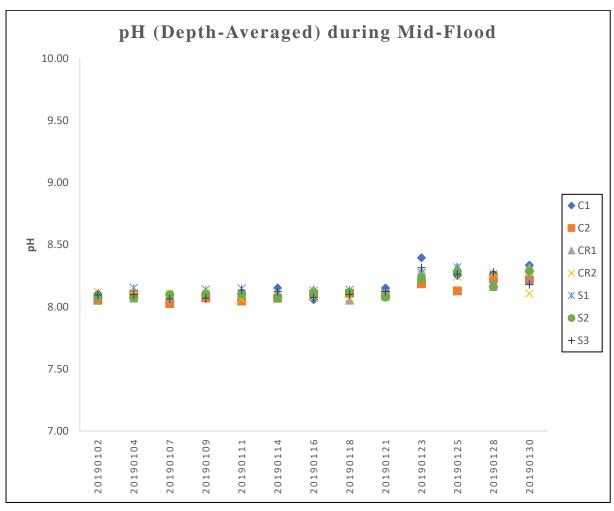


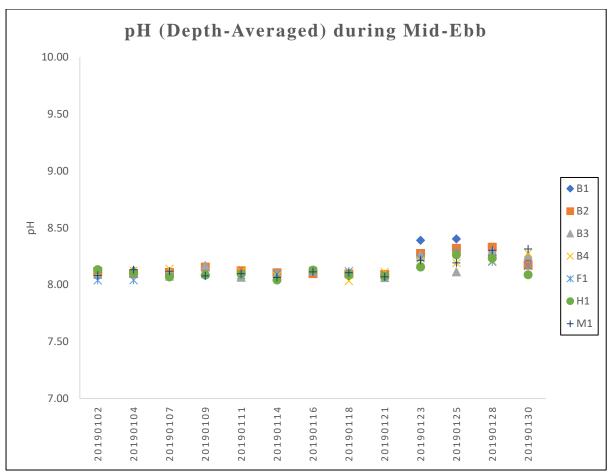


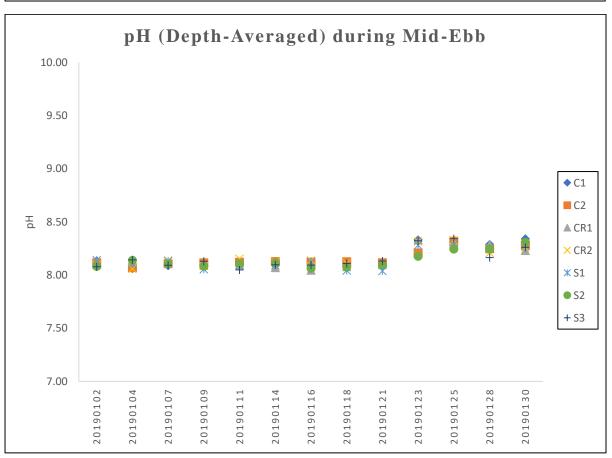


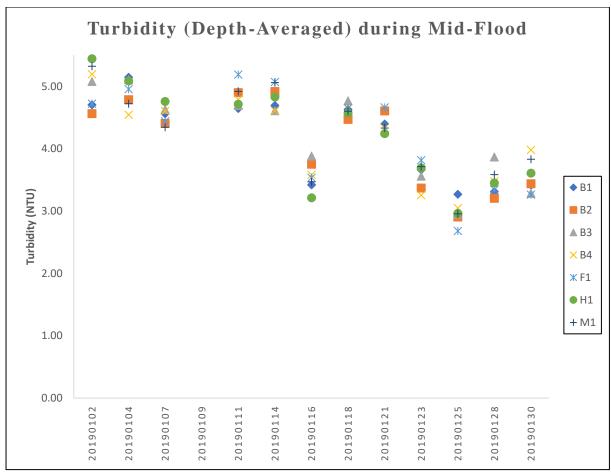


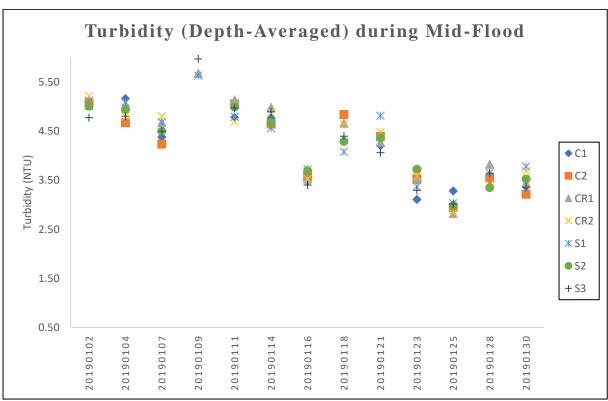


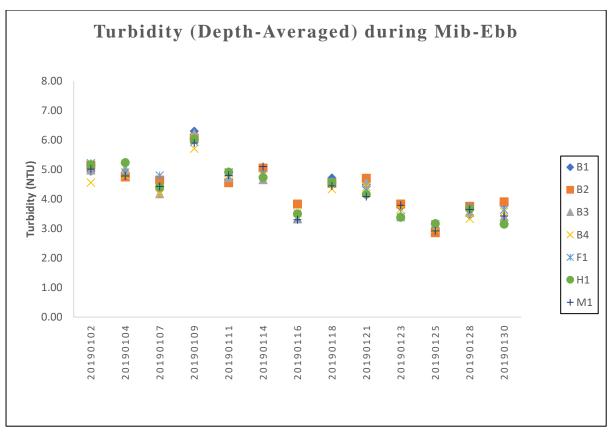


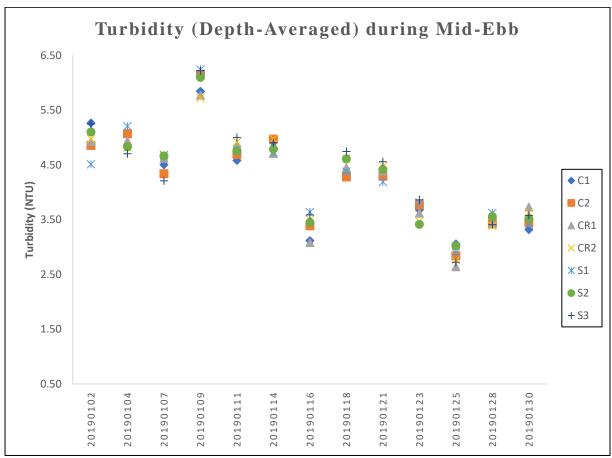


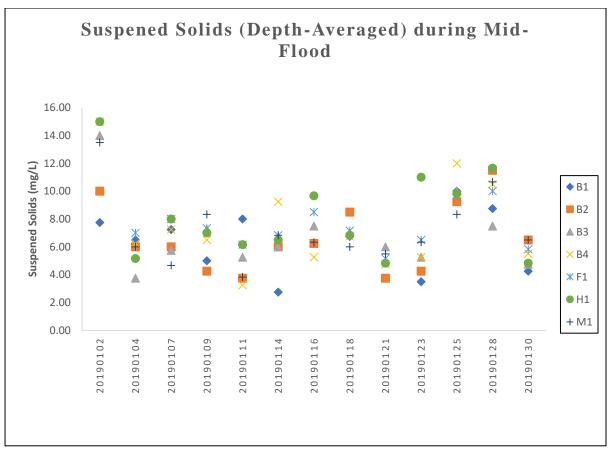


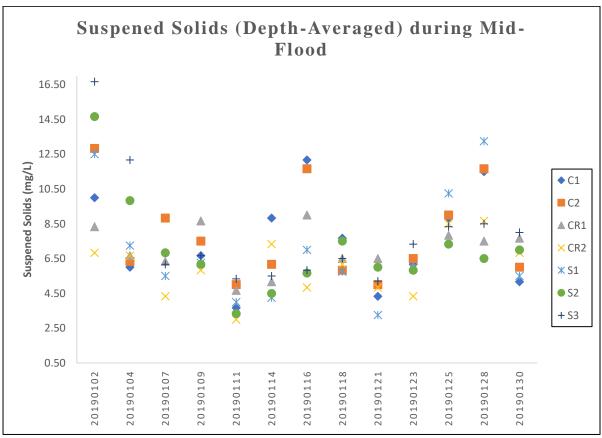


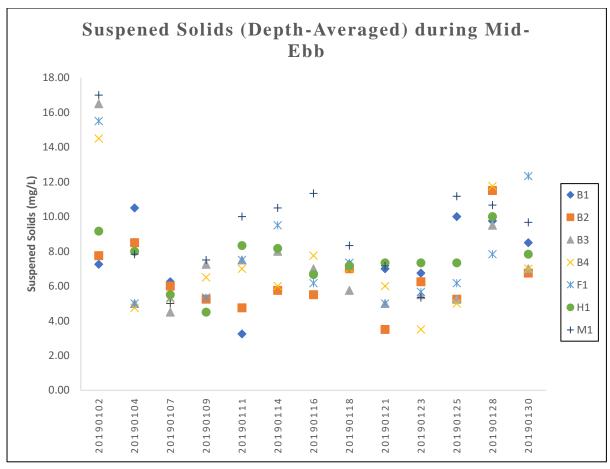


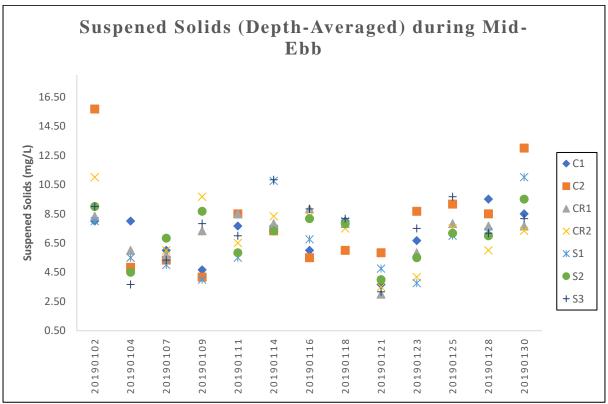


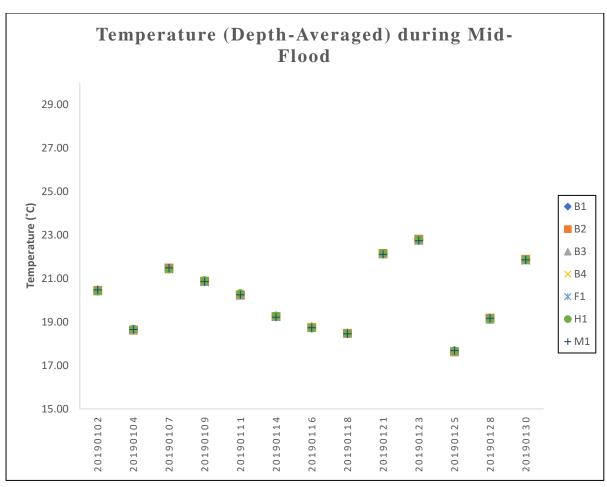


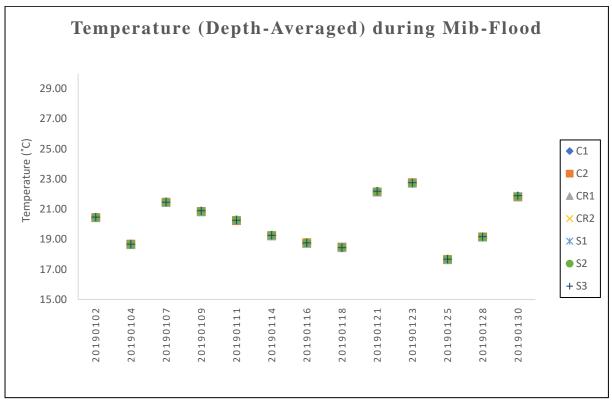


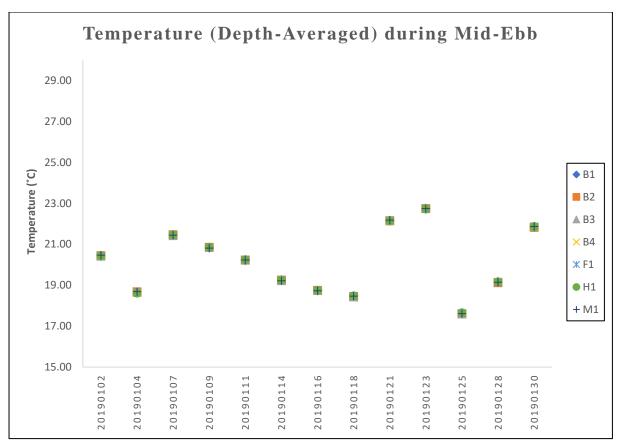


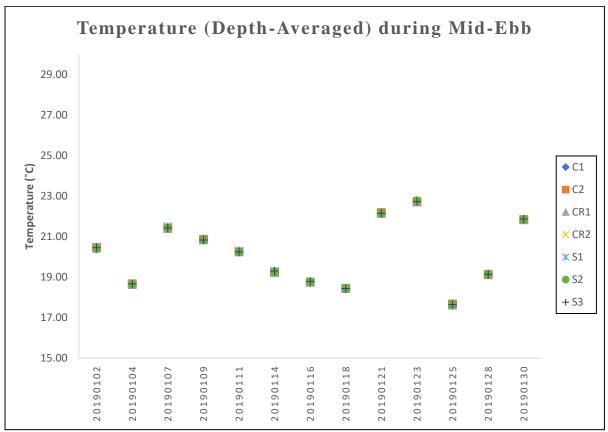


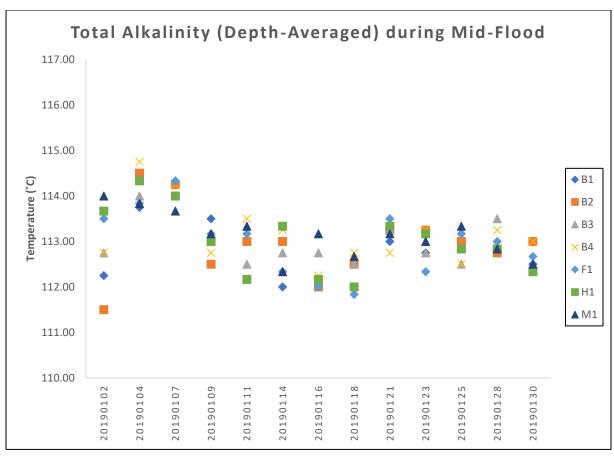


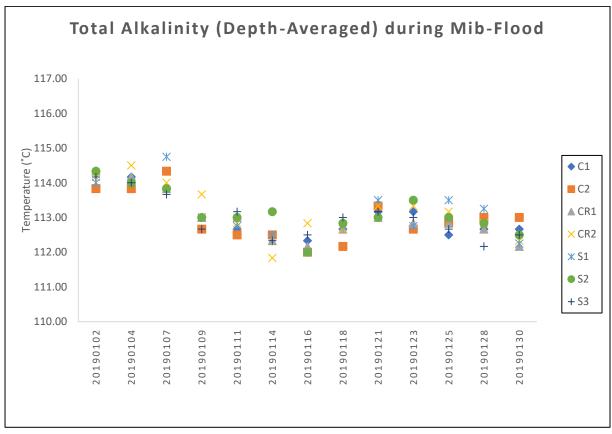


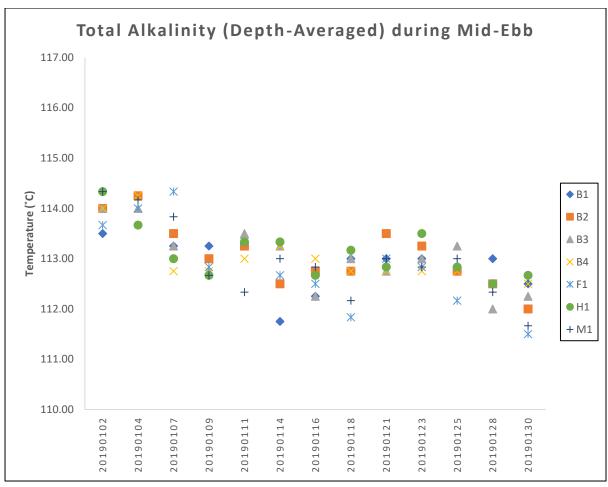


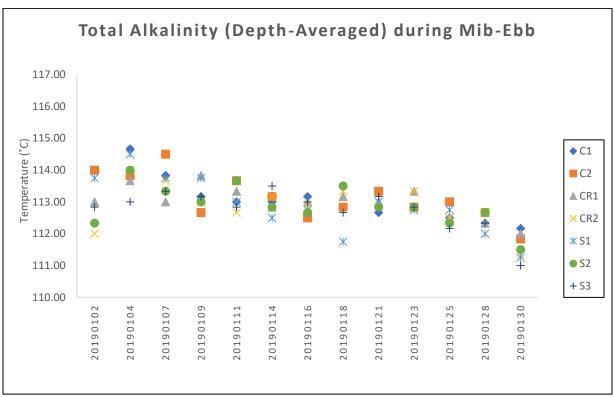


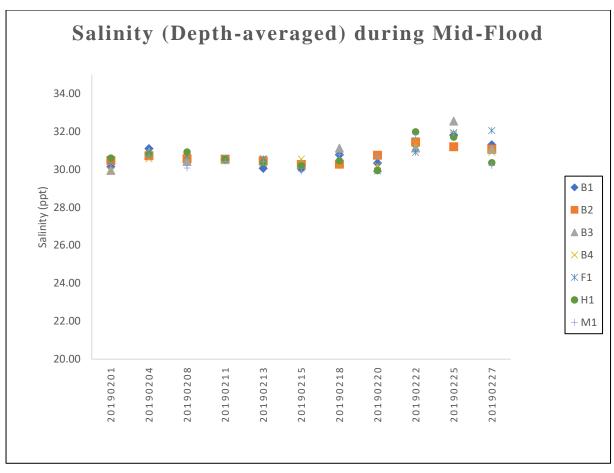


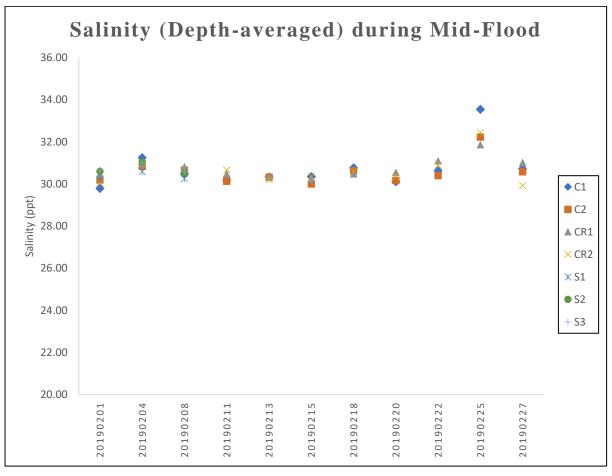


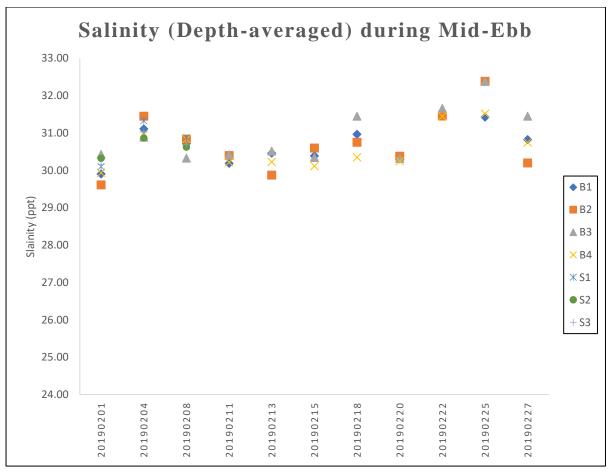

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

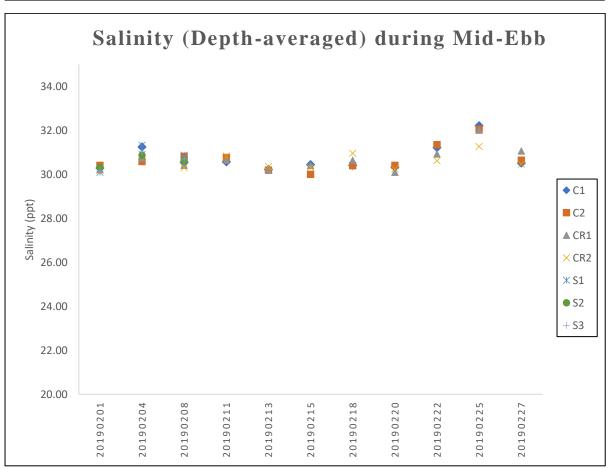


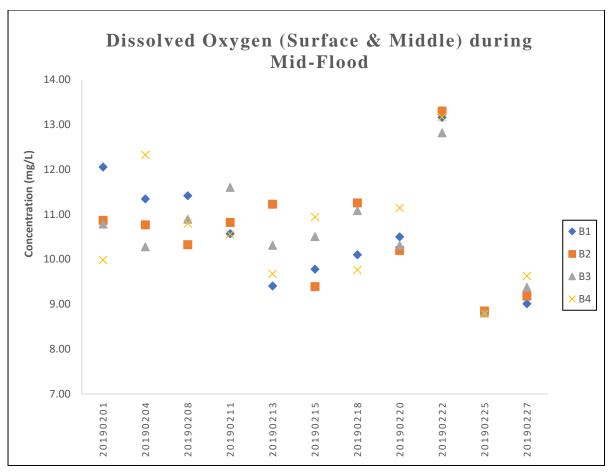

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

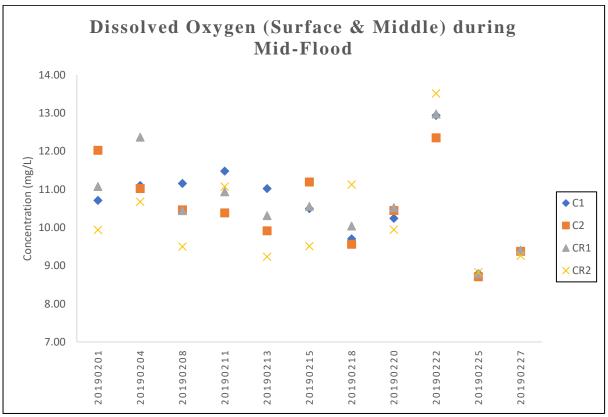


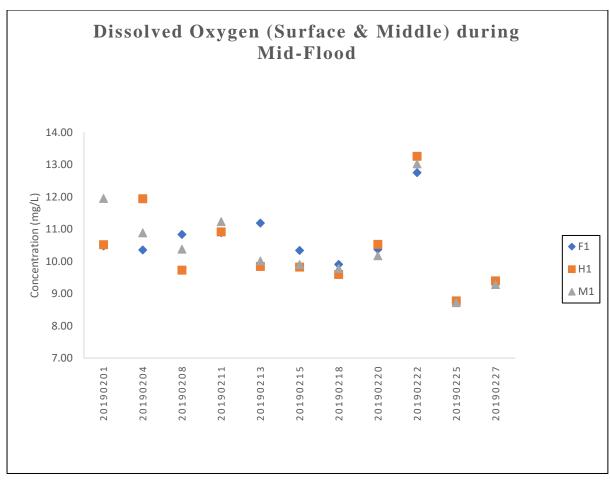

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

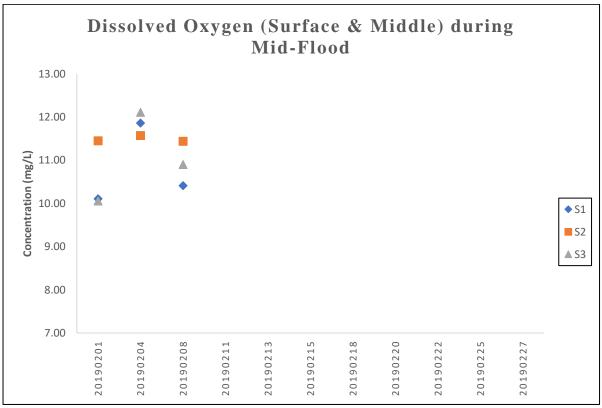


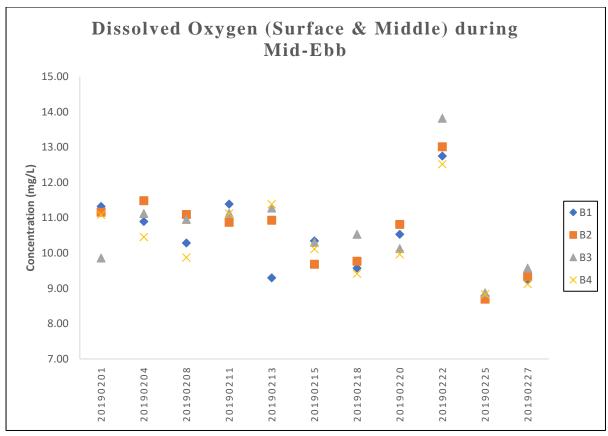


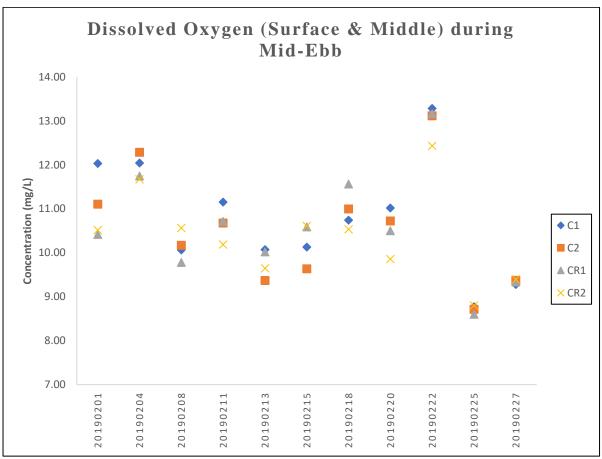

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

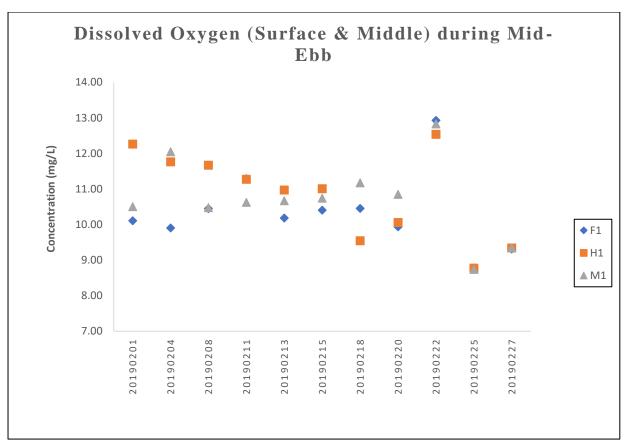


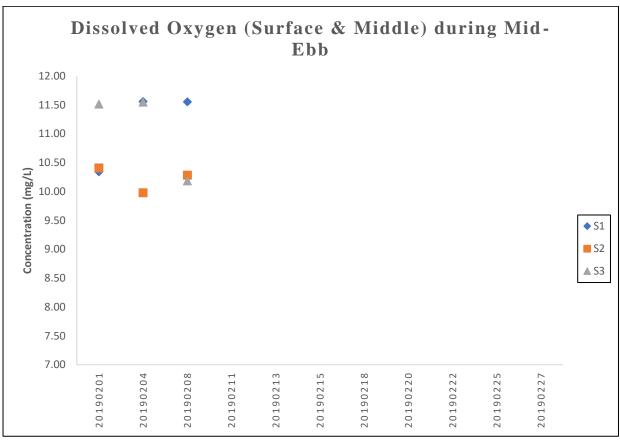


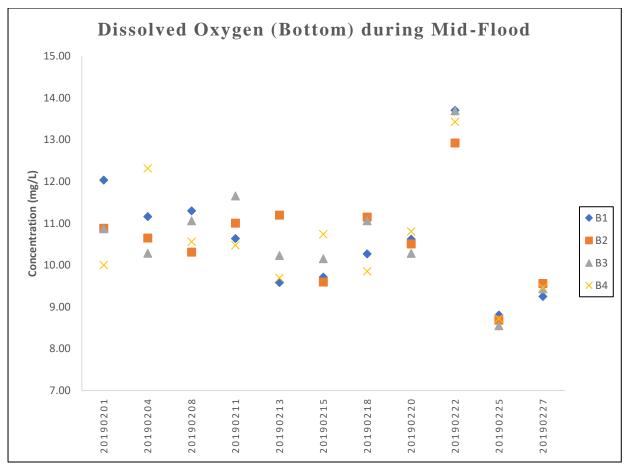


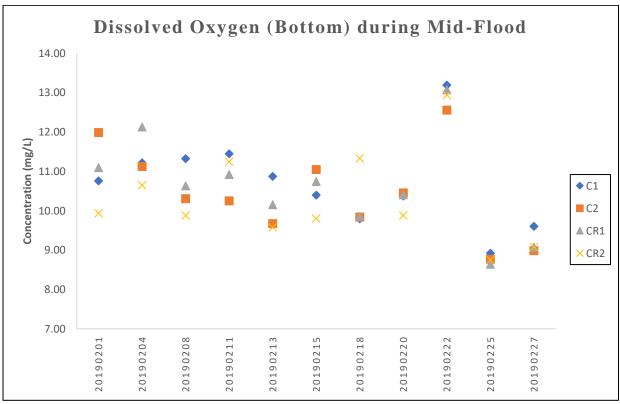


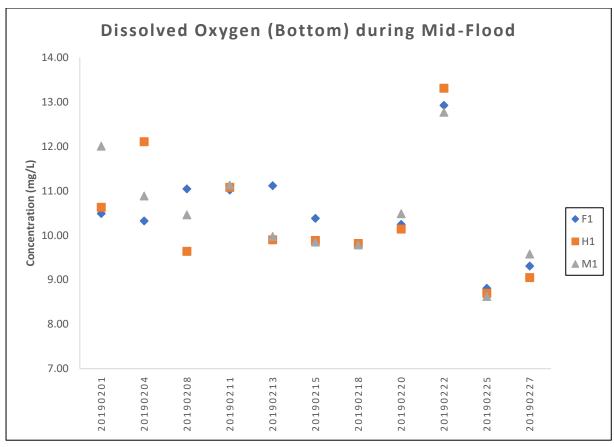


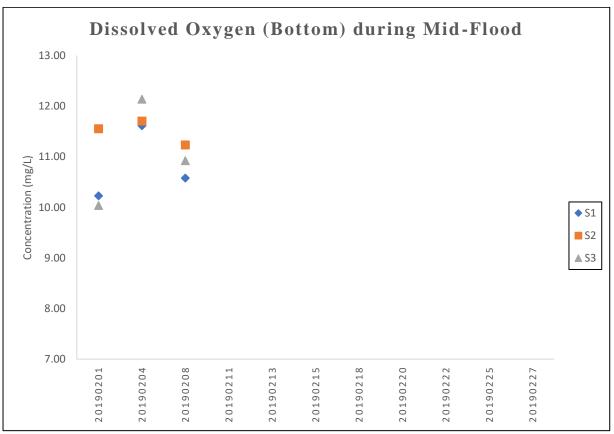




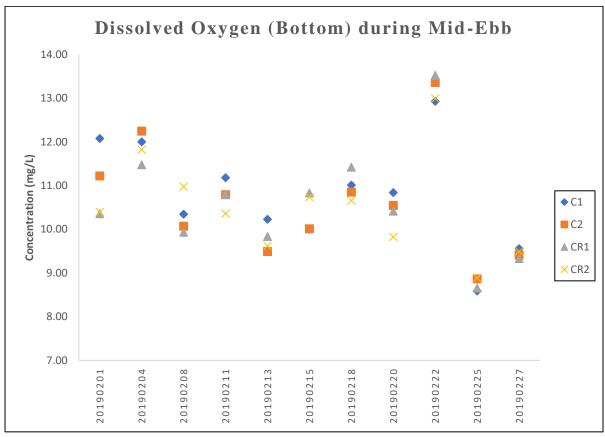


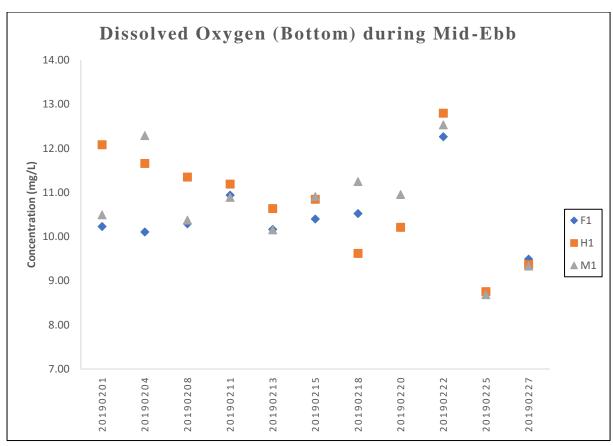


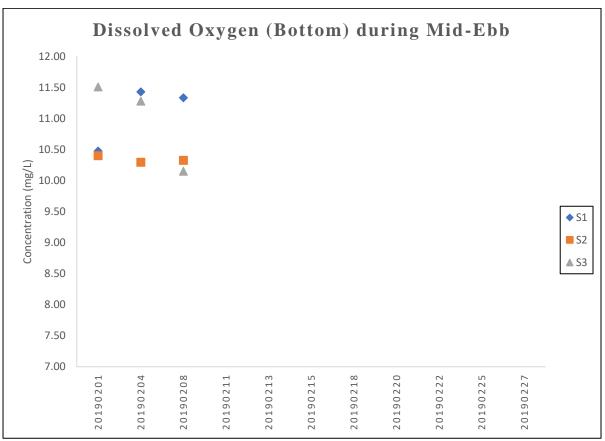


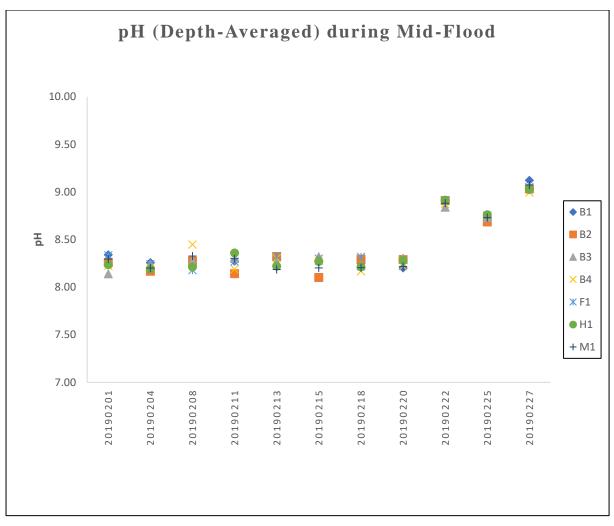


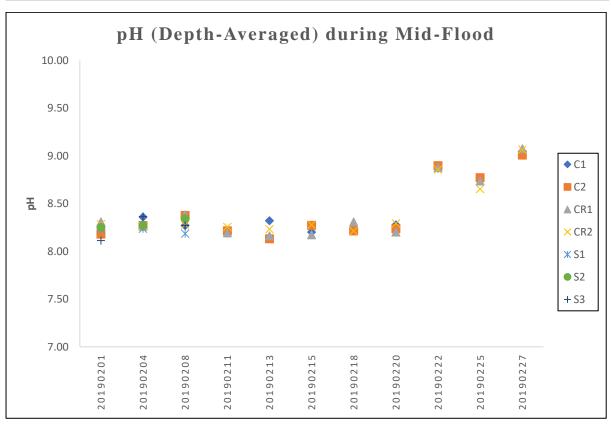


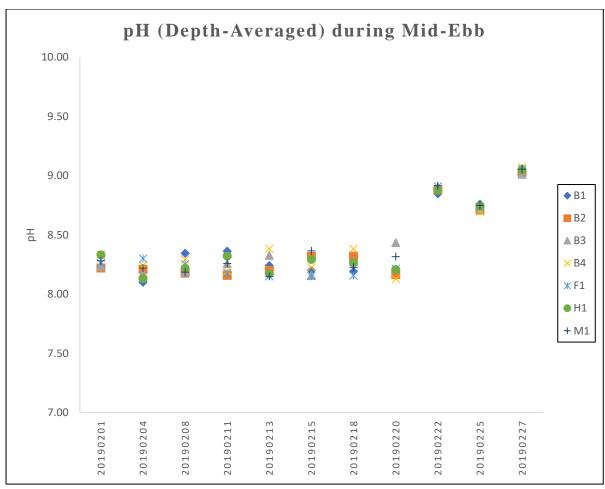


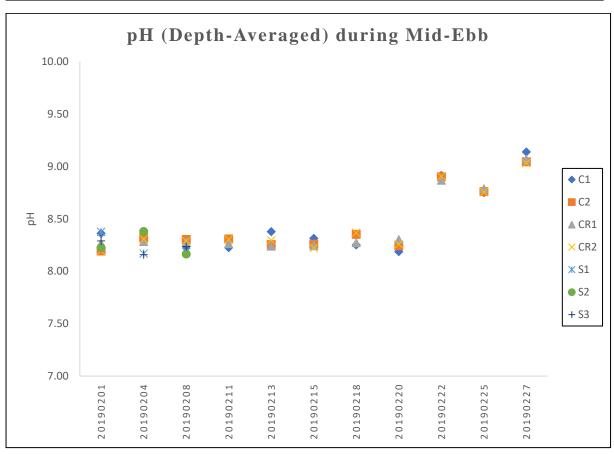


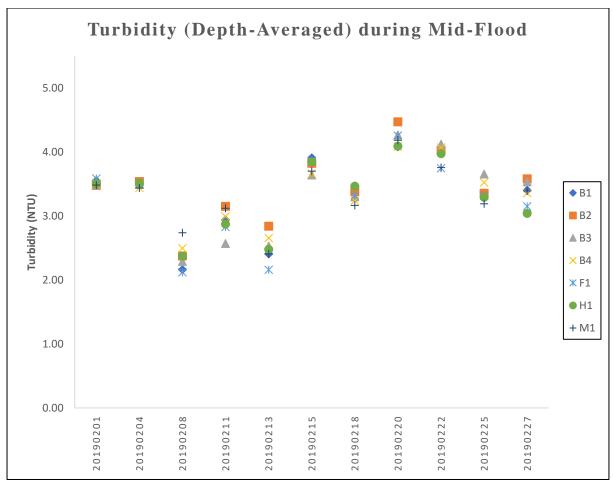


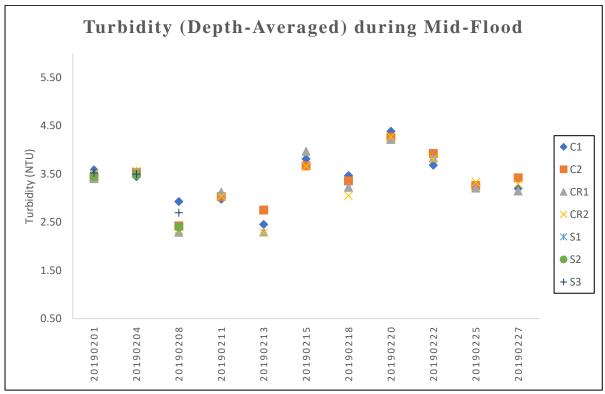


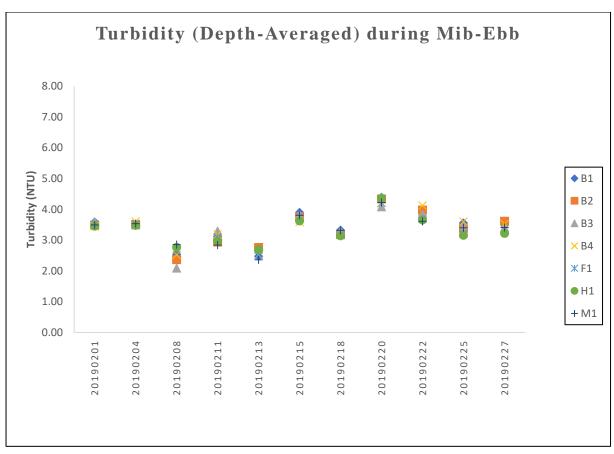


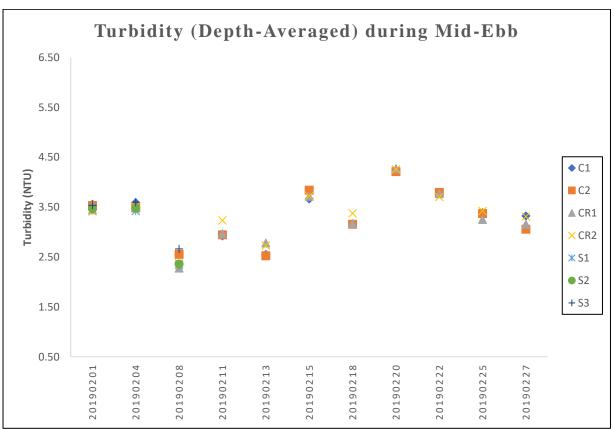


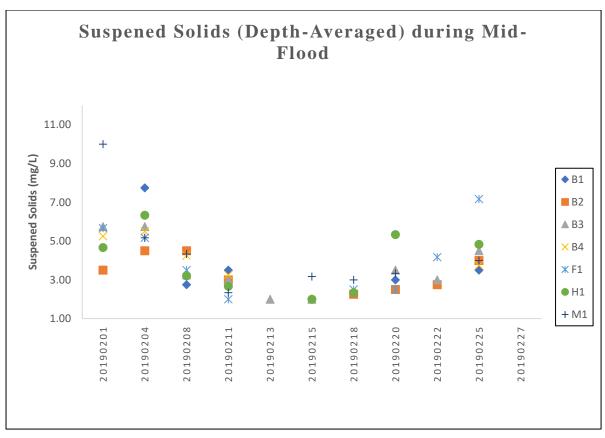


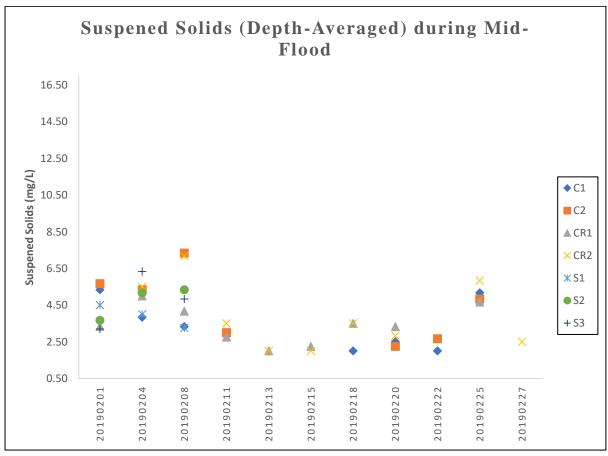


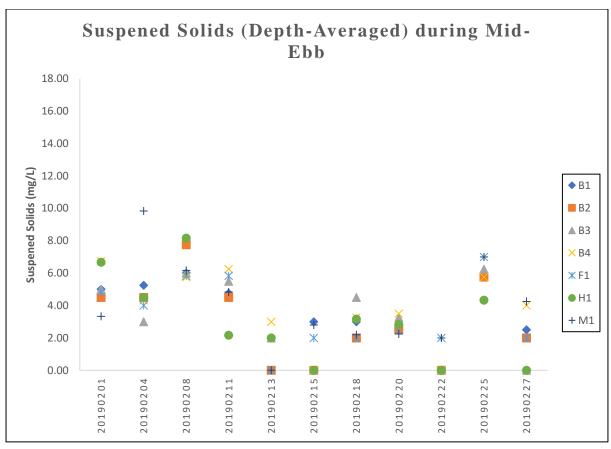


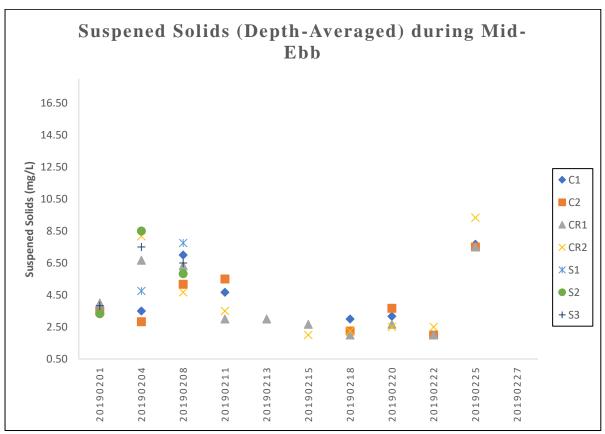


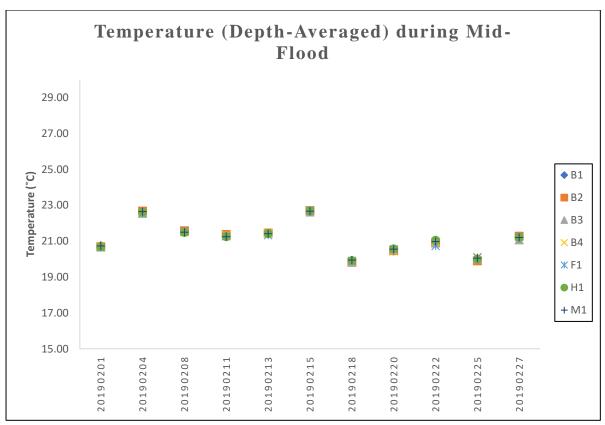


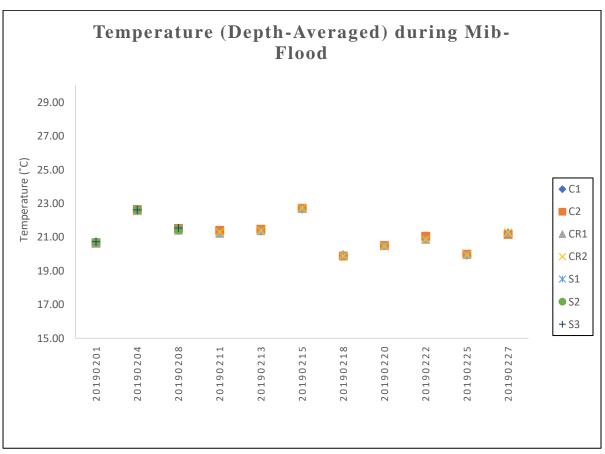


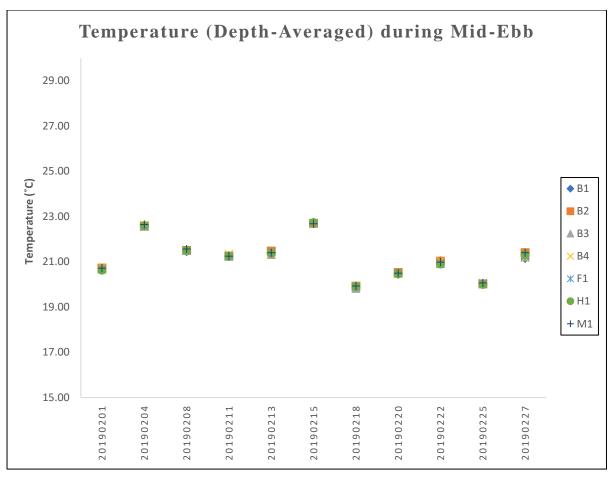

Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

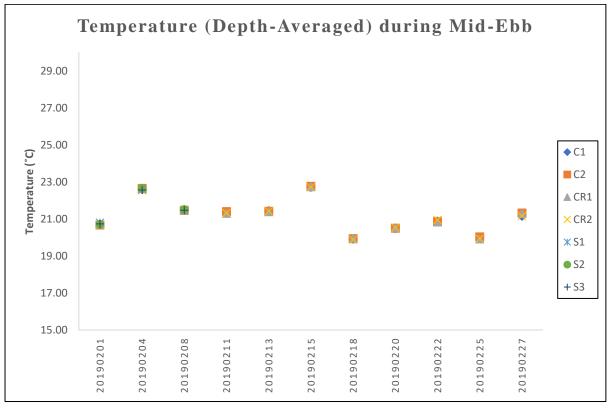


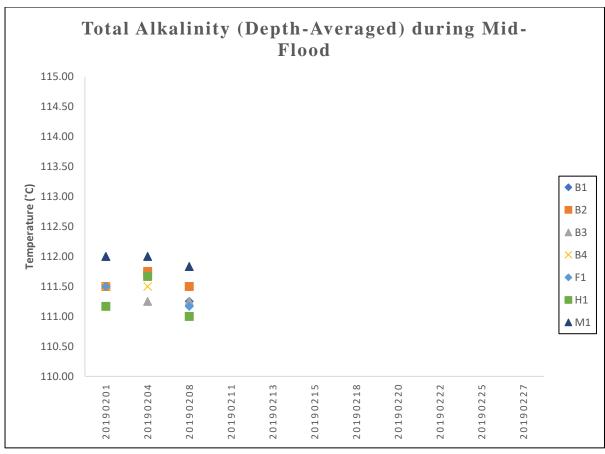

Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

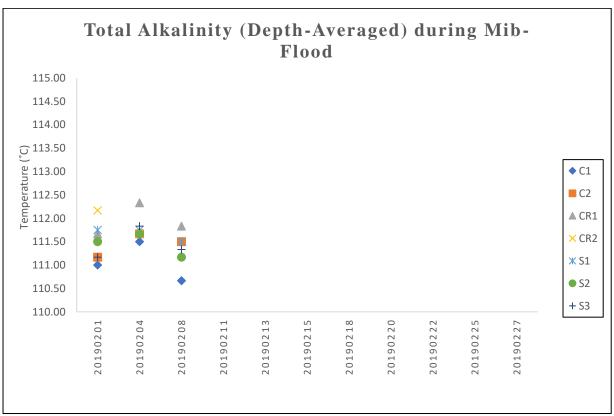


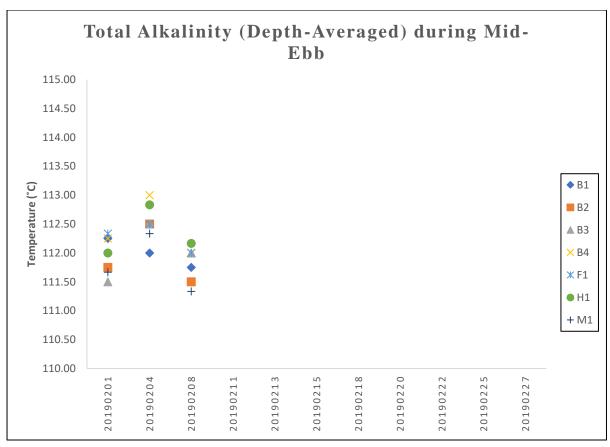

Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

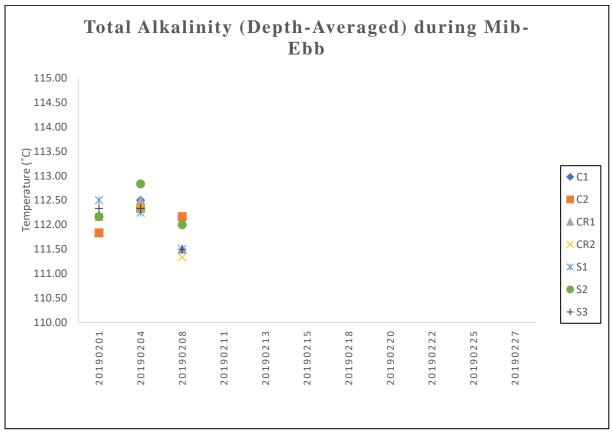


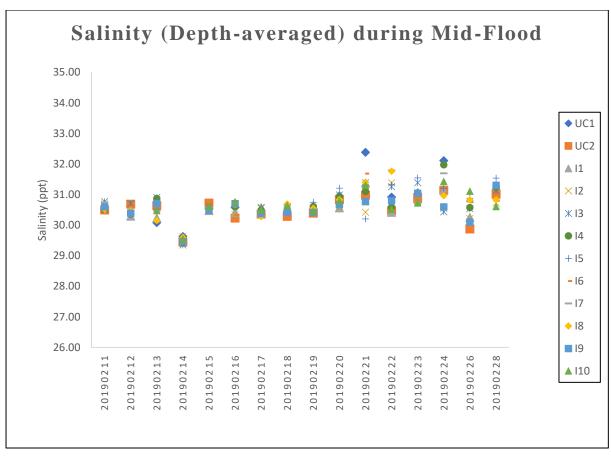

Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

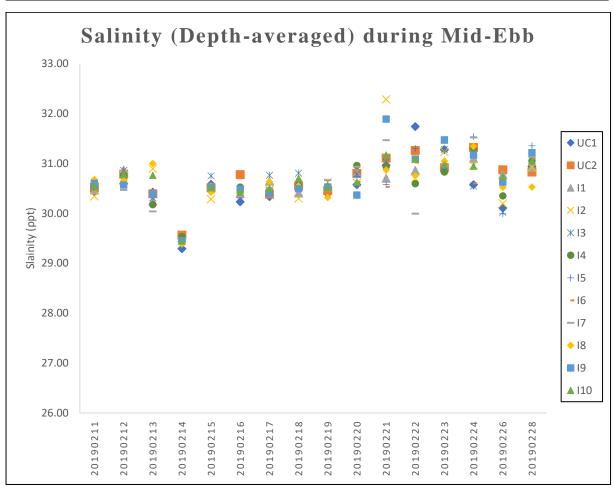


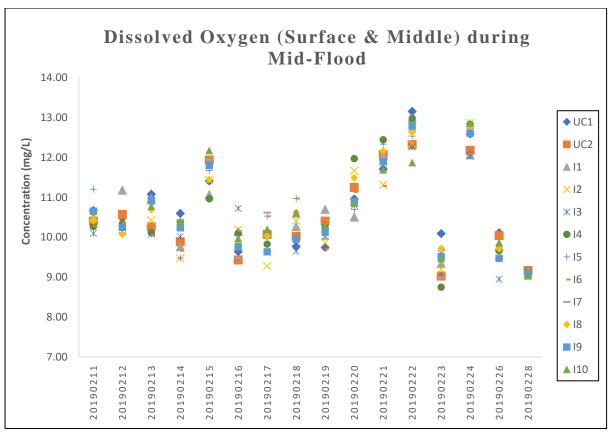

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

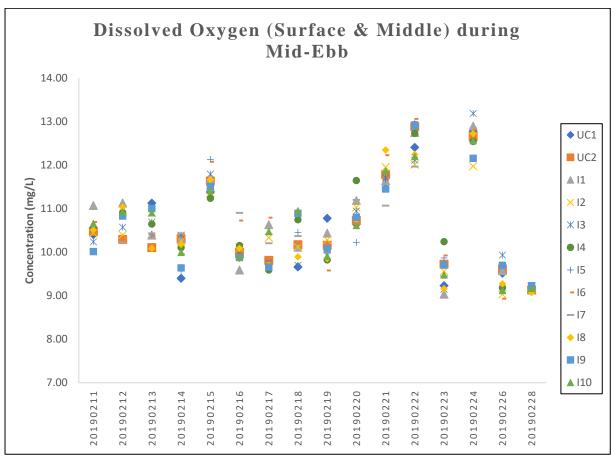



Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.



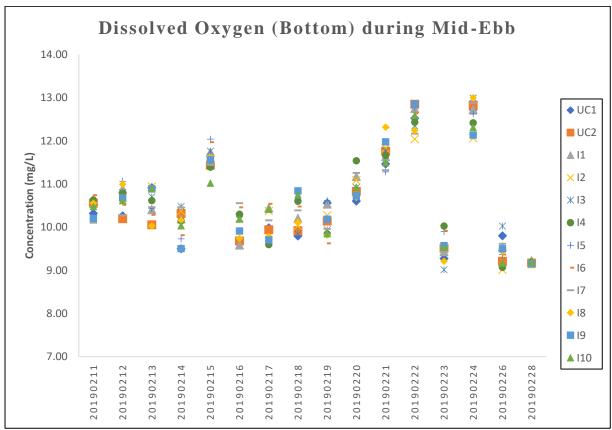

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

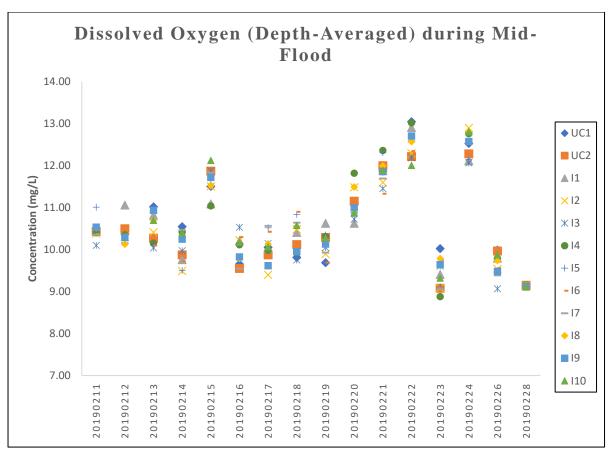


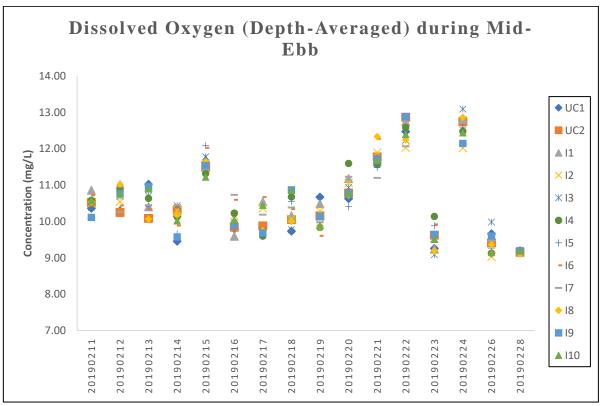


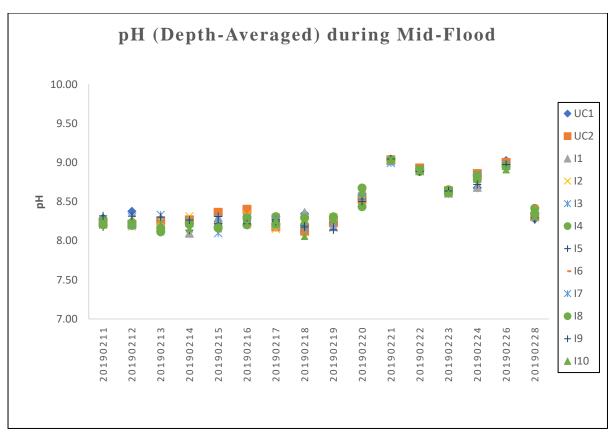
Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

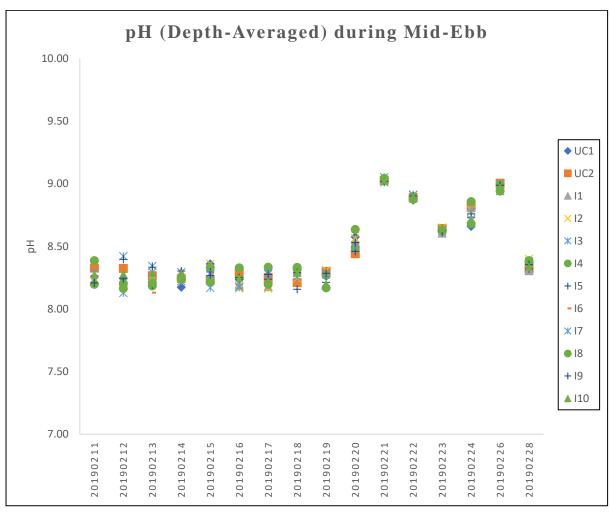


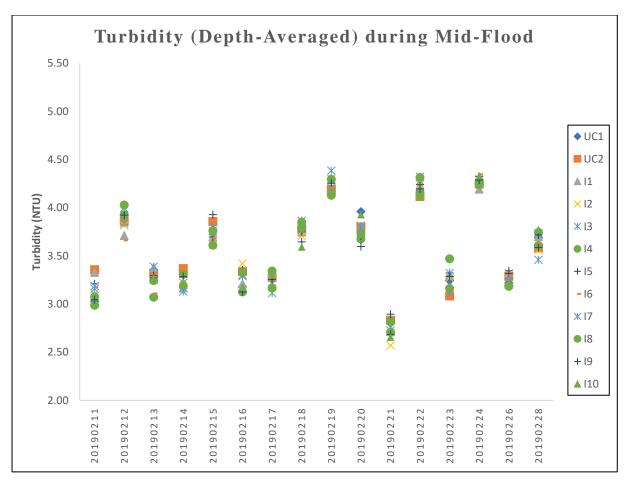


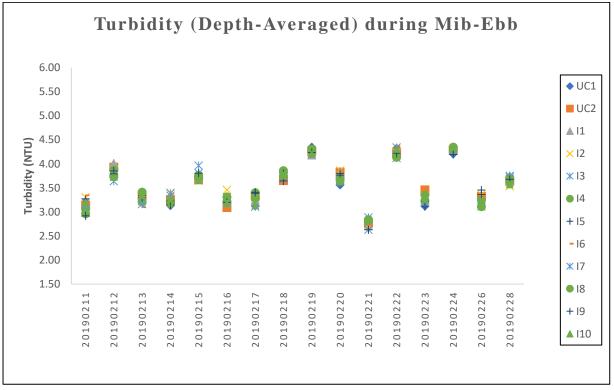



Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.10** of the monthly EM & A report.

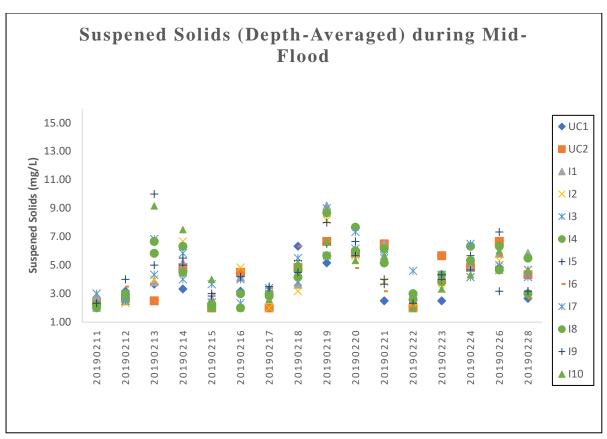


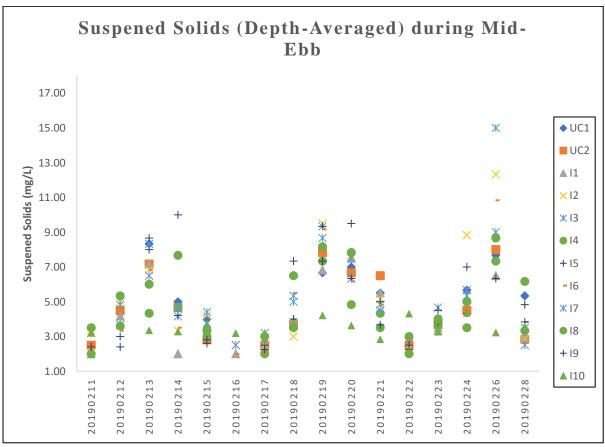

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.10** of the monthly EM & A report.

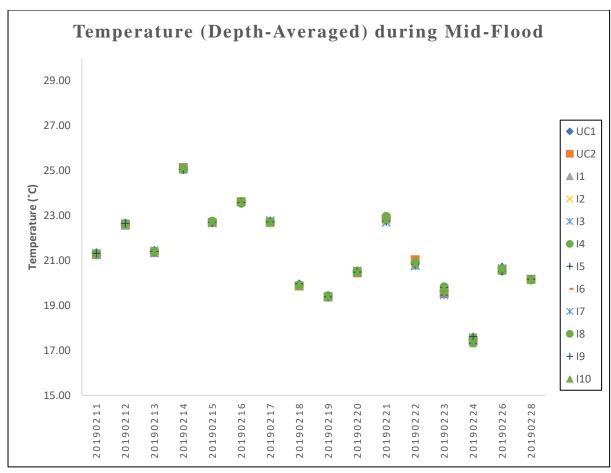


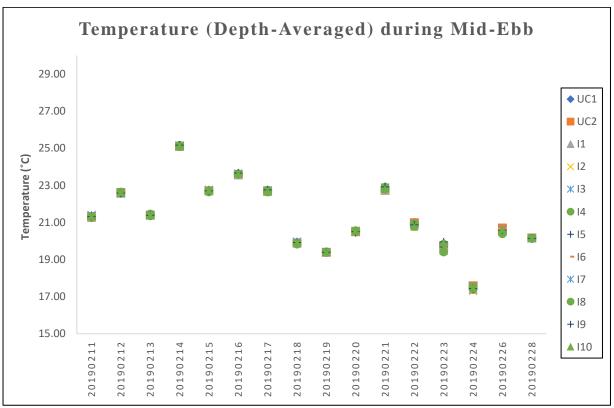


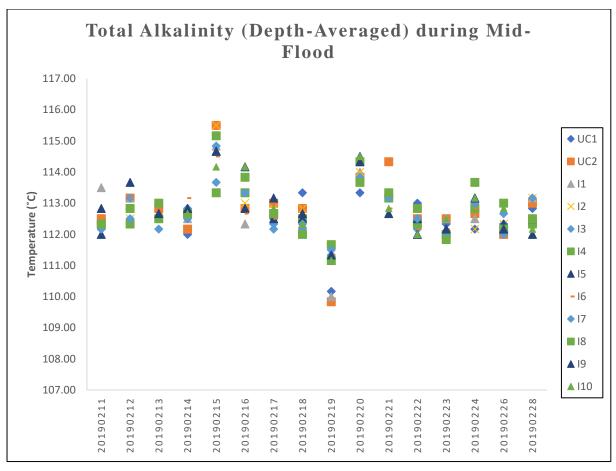
Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.10** of the monthly EM & A report.

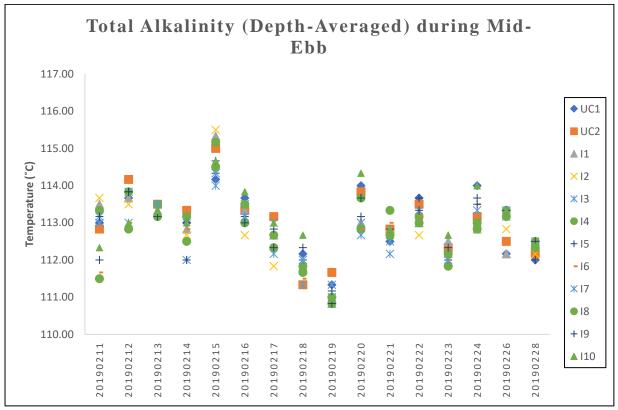







Note: The Action and Limit Level of turbidity can be referred to **Table 2.10** of the monthly EM & A report.




Note: The Action and Limit Level of suspened solids can be referred to **Table 2.10** of the monthly EM & A report.

Note: The Action and Limit Level of temperature can be referred to **Table 2.9** of the monthly EM & A report.

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.9** of the monthly EM & A report.

Contract No. EP/SP/66 Integrated Waste Mana	5/12 agement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix E	HOKLAS Laboratory Cert	ificate

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 - 《测試及校正實驗所能力的通用規定》所訂的要求 of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行截於香港實驗所認可計劃(認可實驗所名冊)內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 测试或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised international Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO/IEC 17025: 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格深示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論權、國際實驗所認可含作組織及國際標準化組織的關合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HONDAS 066

註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong

香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可諮詢委員會的建議下獲香港認可處執行機關接受為

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

Environmental Testing

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行載於認可範圍內下逃測試類別中的指定測試或校正工作

環境測試

This accreditation to ISO/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communiqué). 並項 ISO/IEC 17025:2005 的認可資格證明此實驗所具傳播定範疇內所須的技術能力並 實施一套實驗所質量管理體系(見圖際語可論理・國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

WONG Wang-wan, Executive Administrator

執行幹事 黃宏華 Issue Date: 16 July 2014 簽發日期: 二零一四年七月十六日

Registration Number: HOKLAS 241

Date of First Registration: 16 July 2014 首次註冊日期:二零一四年七月十六日

This certificate is issued subject to the terms and conditions laid down by HKAS. 本證書按照香港間可處訂立的條款及條件發出

L 001195

Contract No. EP/SP/66. Integrated Waste Mana	gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix F	Water Quality Equipment	Calibration Certificate

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM WORK ORDER: HK1860886

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

ADDRESS: RM A 20/F., GOLD KING IND BLDG, SUB-BATCH: C

NO. 35-41 TAI LIN PAI ROAD, LABORATORY: HONG KONG KWAI CHUNG, DATE RECEIVED: 21-Nov-2018 N.T., HONG KONG. DATE OF ISSUE: 27-Dec-2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/15H103928

Equipment No.: EQW018

Date of Calibration: 28 November, 2018

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Si

 $This\ report\ may\ not\ be\ reproduced\ except\ with\ prior\ written\ approval\ from\ ALS\ Technichem\ (HK)\ Pty\ Ltd.$

WORK ORDER: HK1860886

SUB-BATCH: C

DATE OF ISSUE: 27-Dec-2018

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/ 15H103928

Equipment No.: EQW018

Date of Calibration: 28 November, 2018 Date of Next Calibration: 28 February, 2019

PARAMETERS:

Conductivity Method Ref: APHA (21st edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)
146.9	159.8	+8.8
6667	6492	-2.6
12890	12526	-2.8
58670	55801	-4.9
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.17	3.05	-0.12
5.95	5.92	-0.03
8.19	8.29	+0.10
	Tolerance Limit (mg/L)	±0.20

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.10	+0.10
7.0	7.13	+0.13
10.0	9.99	-0.01
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER: HK1860886

SUB-BATCH: 0

DATE OF ISSUE: 27-Dec-2018

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/ 15H103928

Equipment No.: EQW018

Date of Calibration: 28 November, 2018 Date of Next Calibration: 28 February, 2019

PARAMETERS:

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.01	
10	10.23	+2.3
20	21.02	+5.1
30	29.83	-0.6
	Tolerance Limit (%)	±10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	11.2	+1.2
22.0	21.7	-0.3
41.0	40.8	-0.2
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Ay

WORK ORDER: HK1860886

SUB-BATCH: 0

DATE OF ISSUE: 27-Dec-2018

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: Professional DSS

Serial No.: 15H102620/ 15H103928

Equipment No.: EQW018

Date of Calibration: 05 December, 2018 Date of Next Calibration: 05 March, 2019

PARAMETERS:

Turbidity Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.14	- -
4	3.60	-10.0
40	41.49	+3.7
80	74.42	-7.O
400	426.8	+6.7
800	803.89	+0.5
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong

T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR. NELSON TSUI

WORK ORDER:

HK1859679

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

ADDRESS:

UNIT 1908, IPLACE.

SUB-BATCH:

0

NOS. 301-305 CASTLE PEAK ROAD.

LABORATORY:

HONG KONG

KWAI CHUNG, NEW TERRITORIES,

DATE RECEIVED:

15- Nov- 2018

HONG KONG

DATE OF ISSUE:

23- Nov- 2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Dissolved Oxygen, pH Value, Turbidity, Salinity, Redox Potential and Temperature

Equipment Type:

Multifunctional Meter

Brand Name:

HORIBA

Model No.:

U- 5000

Serial No.:

WJ2DHR9V

Equipment No.:

BGYP9CKD

Date of Calibration:

23 November, 2018

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganic

Na Sha

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER:

HK1859679

SUB-BATCH:

DATE OF ISSUE:

23- Nov- 2018

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:

Multifunctional Meter

Brand Name: Model No.:

HORIBA

U-5000

Serial No.:

WJ2DHR9V **BGYP9CKD**

Equipment No.: Date of Calibration:

23 November, 2018

Date of Next Calibration:

23 February, 2019

PARAMETERS:

Dissolved Oxygen

Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.34	3.32	- 0.02
6.23	6.13	- 0.10
8.13	7.98	- 0.15
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.20	+0.20
7.0	7.02	+ 0.02
10.0	9.98	- 0.02
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Chan Siu Ming, Vico Manager - Inorganic

Man Ship

WORK ORDER: HK1859679

SUB-BATCH:

DATE OF ISSUE:

23- Nov- 2018

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:

Multifunctional Meter

Brand Name: Model No.:

HORIBA

U-5000

Serial No.:

WJ2DHR9V

Equipment No.: Date of Calibration:

BGYP9CKD

23 November, 2018

Date of Next Calibration:

23 February, 2019

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.00	
4	0.00	- 100.0
40	34.70	- 13.3
80	79.7	- 0.4
400	448	+12.0
800	836	+ 4.5
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.4	- 6.0
20	20.3	+ 1.5
30	28.0	- 6.7
	Tolerance Limit (%)	± 10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Ali

WORK ORDER: HK1859679

SUB-BATCH:

0

DATE OF ISSUE:

23- Nov- 2018

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:

Multifunctional Meter

Brand Name: Model No.: HORIBA U- 5000

Serial No.:

WJ2DHR9V

Equipment No.:

WJZDHR9V BGYP9CKD

Date of Calibration:

23 November, 2018

Date of Next Calibration:

23 February, 2019

PARAMETERS:

Redox Potential

Method Ref: APHA (21st edition), 2580B

Method Ref: Orion Research Instruction Manual and the Laboratory Manual

the Environmental of Water, Wastewater and Soil (2nd edition), Rump & Krist (1992)

Expected Reading (mV)	Displayed Reading (mV)	Difference of A and B (mV)
Solution A (~234mV)	98	
Solution B (~300mV)	169	+71.0
	Tolerance Limit (mV)	> 66

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.5	12.26	+ 0.8
22.0	23.07	+1.1
39.0	38.34	- 0.7
	Tolerance Limit (°C)	± 2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Si

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong

T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR. NELSON TSUI

WORK ORDER:

HK1863504

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

ADDRESS:

UNIT 1908, IPLACE,

SUB-BATCH:

0

DILLUS.

NOS. 301-305 CASTLE PEAK ROAD,

LABORATORY: DATE RECEIVED: HONG KONG

KWAI CHUNG, NEW TERRITORIES,

DATE OF ISSUE:

06- Dec- 2018 10- Dec- 2018

HONG KONG

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Turbidity

Equipment Type:

Multifunctional Meter

Brand Name:

HORIBA

Model No.: Serial No.: U- 5000

Equipment No.:

BGYP9CKD

Date of Calibration:

06 December, 2018

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Si

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER:

HK1863504

SUB-BATCH:

DATE OF ISSUE:

10- Dec- 2018

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:

Multifunctional Meter

Brand Name: Model No.:

HORIBA U-5000

Serial No.:

Equipment No.:

BGYP9CKD

Date of Calibration: 06 December, 2018

Date of Next Calibration:

06 March, 2019

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.34	
4	4.37	+ 9.3
40	40.1	+ 0.3
80	87.5	+ 9.4
400	430	+ 7.5
800	863	+ 7.9
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Ship

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong

T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR. NELSON TSUI

WORK ORDER:

HK1866963

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

ADDRESS:

UNIT 1908, IPLACE,

SUB-BATCH:

0

NOS. 301-305 CASTLE PEAK ROAD,

LABORATORY:

HONG KONG

KWAI CHUNG, NEW TERRITORIES,

DATE RECEIVED: DATE OF ISSUE:

27- Dec- 2018 15- Jan- 2019

HONG KONG

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Dissolved Oxygen, pH Value, Turbidity, Salinity, Redox Potential and Temperature

Equipment Type:

Multifunctional Meter

Brand Name:

HORIBA

Model No.:

U- 5000

Serial No.: Equipment No.: WJ2DHR9V BGYP9CKD

Date of Calibration:

02 January, 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Shi

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER:

HK1866963

SUB-BATCH:

DATE OF ISSUE:

15- Jan- 2019

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:

Multifunctional Meter

Brand Name: Model No.:

HORIBA U-5000

Serial No.:

WJ2DHR9V

Equipment No.:

BGYP9CKD

Date of Calibration: 02 January, 2019

Date of Next Calibration:

02 April, 2019

PARAMETERS:

Dissolved Oxygen

Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.21	3.13	- 0.08
6.34	6.26	- 0.08
8.02	8.09	+ 0.07
	Tolerance Limit (mg/L)	± 0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.12	+0.12
7.0	7.02	+ 0.02
10.0	9.82	- 0.18
	Tolerance Limit (pH unit)	± 0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Sin

WORK ORDER: HK1866963

SUB-BATCH:

DATE OF ISSUE: 15- Jan- 2019

CLIENT: ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type: Multifunctional Meter

Brand Name: **HORIBA** Model No.: U-5000 Serial No.: WJ2DHR9V Equipment No.: **BGYP9CKD**

Date of Calibration: 02 January, 2019 Date of Next Calibration: 02 April, 2019

PARAMETERS:

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.30	
10	10.12	+1.2
20	20.36	+ 1.8
30	30.73	+ 2.4
	Tolerance Limit (%)	± 10.0

Redox Potential Method Ref: APHA (21st edition), 2580B

Method Ref: Orion Research Instruction Manual and the Laboratory Manual

the Environmental of Water, Wastewater and Soil (2nd edition), Rump & Krist (1992)

Expected Reading (mV)	Displayed Reading (mV)	Difference of A and B (mV)
Solution A (~234mV)	231	
Solution B (~300mV)	303	+72.0
	Tolerance Limit (mV)	> 66

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.8	- 0.2
22.5	21.9	- 0.6
37.0	37.26	+ 0.3
	Tolerance Limit (°C)	± 2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Sig

WORK ORDER:

HK1866963

SUB-BATCH:

DATE OF ISSUE:

15- Jan- 2019

CLIENT:

ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:

Multifunctional Meter

Brand Name: Model No.:

HORIBA U- 5000

Serial No.:

WJ2DHR9V BGYP9CKD

Equipment No.: Date of Calibration: 15 January, 2019

Date of Next Calibration:

02 April, 2019

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.11	
4	4.27	+ 6.7
40	37.8	- 5.5
80	81.5	+ 1.9
400	399	- 0.3
800	828	+ 3.5
	Tolerance Limit (%)	± 10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Sig

Contract No. EP/SP/66. Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Ventur
Appendix G	Event / Action Plan for Wat	er Quality Exceedance

Event		Act	ion	
	ET	IEC	SO	Contractor
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next working day of exceedance. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)

Event		Ac	tion	
	ET	IEC	SO	Contractor
Limit level	Inform the SO and confirm	Discuss with ET and	Discuss with IEC, ET and	Inform the SO and confirm
being exceeded	notification of the non-	Contractor on the mitigation	Contractor on the proposed	notification of the non-
by one	compliance in writing;	measures;	mitigation measures;	compliance in writing;
sampling day	Rectify unacceptable practice;	Review proposals on	Request Contractor to	Rectify unacceptable practice;
	Check all plant and	mitigation measures submitted	critically review the working	Check all plant and
	equipment;	by Contractor and advise the	methods;	equipment;
	Consider changes of working	SO accordingly;	Make agreement on the	Consider changes of working
	methods;	Assess the effectiveness of	mitigation measures to be	methods;
	Discuss with Contractor, IEC	the implemented mitigation	implemented.	Discuss with ET, IEC and SO
	and SO and propose	measures.	Assess the effectiveness of	and propose mitigation
	mitigation measures to IEC	(The above actions should be	the implemented measures.	measures to IEC and SO
	and SO within 3 working days;	taken within 1 working day	(The above actions should be	within 3 working days;
	Implement the agreed	after the exceedance is	taken within 1 working day	Implement the agreed
	mitigation measures.	identified)	after the exceedance is	mitigation measures.
	(The above actions should be		identified)	(The above actions should be
	taken within 1 working day			taken within 1 working day
	after the exceedance is			after the exceedance is
	identified)			identified)

Event		Act	tion	
	ET	IEC	SO	Contractor
Limit level	Identify source(s) of impact;	Discuss with ET and	Discuss with IEC, ET and	Inform the SO and confirm
being exceeded	Inform IEC, Contractor and	Contractor on the mitigation	Contractor on the proposed	notification of the non-
by more than	EPD;	measures;	mitigation measures;	compliance in writing;
one	Check monitoring data, all	Review proposals on	Request Contractor to	Rectify unacceptable practice;
consecutive	plant, equipment and	mitigation measures submitted	critically review the working	Check all plant and
sampling days	Contractor's working methods.	by Contractor and advise the	methods;	equipment;
	Discuss mitigation measures	SO accordingly;	Make agreement on the	Consider changes of working
	with IEC, SO and Contractor.	Assess the effectiveness of	mitigation measures to be	methods;
	Ensure mitigation measures	the implemented mitigation	implemented.	Discuss with ET, IEC and SO
	are implemented;	measures.	Assess the effectiveness of	and propose mitigation
	Increase the monitoring	(The above actions should be	the implemented measures.	measures to IEC and SO
	frequency to daily until no	taken within 1 working day	Consider and instruct, if	within 3 working days;
	exceedance of Limit level for	after Limit Level being	necessary, the Contractor to	Implement the agreed
	two consecutive days.	exceeded by two consecutive	slow down or to stop all or part	mitigation measures;
	(The above actions should be	sampling days)	of the marine work until no	As directed by the SOR, to
	taken within 1 working day		exceedance of Limit level.	slow down or to stop all or part
	after Limit Level being		(The above actions should be	of the marine work or
	exceeded by two consecutive		taken within 1 working day	construction activities.
	sampling days)		after Limit Level being	(The above actions should be
			exceeded by two consecutive	taken within 1 working day
			sampling days)	after Limit Level being
				exceeded by two consecutive
				sampling days)

Contract No. EP/SP/66. Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix H	Noise Monitoring Equipmer Certificate	nt Calibration

Certificate of Calibration

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13661-E0)

Microphone:

ACO 7052 (Serial No.:70537)

Preamplifier:

NTi Audio MA220 (Serial No.:6282)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Company Address:

Unit 1908, iPlace, Nos. 301-305 Castle Peak Road.

Kwai Chung, New Territories

Upon receipt for calibration, the instrument was found to be:

Within

 \square Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 7 September 2018

Date of calibration: 10 September 2018

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa *L*aboratory Manager

Date of issue: 10 September 2018

Certificate No.: APJ18-086-CC001

Page 1 of 4

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

26.0 °**C**

Air Pressure:

1008 hPa

Relative Humidity:

64.8 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV180064

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			ting of Unit-under-test (UUT) Applied value			UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. V	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB		
30-130	dBA	SPL	Fast	94	1000	94.0	Ref
30-130	uDA	SPL	Slow	74	1000	94.0	±0.3

Certificate No.: APJ18-086-CC001

Page 2 of 4

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong
Tel: (852) 2668 3423 Fax:(852) 2668 6946
Homepage: http://www.aa-lab.com E-mail:inquiry@aa-lab.com

(A+A)* Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB	
					31.5	93.9	±2.0	
					63	94.0	±1.5	
				125	94.0	±1.5		
30-130	dB	SPL	Fast	94	250	94.0	±1.4	
30-130	uБ	SIL	rasi	1 ast	/	500	94.0	±1.4
					1000	94.0	Ref	
					2000	93.8	±1.6	
					4000	93.9	±1.6	

A-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1								
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB							
					31.5	54.8	-39.4 ±2.0							
						63	67.8	-26.2 ±1.5						
					125	77.9	-16.1 ±1.5							
30-130	dBA	SPL	Fast	94	250	85.4	-8.6 ± 1.4							
30-130	uD/1	Si L	r ast	ı ası	i ust	i ust	1 ust	1 ust	i ust	1 ust	1 431	500	90.8	-3.2 ±1.4
					1000	94.0	Ref							
					2000	95.0	+1.2±1.6							
					4000	94.9	+1.0±1.6							

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading ,	IEC 61672 Class 1					
Range, dB	Freq. V	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB				
					31.5	90.9	-3.0 ±2.0				
					63	93.2	-0.8 ±1.5				
			Fast		125	93.8	-0.2 ±1.5				
30-130	dBC	SPL		Fast	Fast	Fast	94	250	94.0	-0.0 ±1.4	
30-130	ubc	SIL					1 dat	74	500	94.0	-0.0±1.4
				2000	93.7	-0.2 ±1.6					
					4000	93.1	-0.8±1.6				

Certificate No.: APJ18-086-CC001

Page 3 of 4

Acoustics and Air Testing Laboratory Co. Ltd. 警學及空氣測試實驗室有限公司

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.15
94 UD	63 Hz	± 0.05
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.10
10.4 ID	1000 Hz	± 0.05
104 dB	1000 Hz	± 0.05
114 dB	1000 112	

The uncertainties are evaluated for a 95% confidence level.

Note: The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ18-086-CC001

CALIBRATION CERTIFICATE

Certificate Information

Date of Issue 23-Nov-2018 Certificate Number MLCN182934S

Customer Information

Company Name

Address

Acuity Sustainability Consulting Limited Unit 1908, Nos. 301-305 Castle Peak Road,

Kwai Chung, N.T.

Equipment-under-Test (EUT)

Description

Sound Level Calibrator

Manufacturer

Rion

Model Number Serial Number

NC-74 34504770

Equipment Number

Calibration Particular

Date of Calibration

23-Nov-2018

Calibration Equipment

4231(MLTE008) / AV180068 / 13-May-20

1357(MLTE190) / MLEC18/05/02 / 25-May-19

Calibration Procedure

MLCG00, MLCG15

Calibration Conditions

Laboratory Temperature $23 \, ^{\circ}\text{C} \pm 5 \, ^{\circ}\text{C}$

EUT

 $55\% \pm 25\%$ Relative Humidity

Stabilizing Time Warm-up Time

Over 3 hours

Power Supply

Not applicable

Internal battery

Calibration Results

Calibration data were detailed in the continuation pages.

Calibration result was out of EUT specification.

Approved By & Date

K.O. Lo

23-Nov-2018

Statements

- Calibration equipment used for this calibration are traceable to national / international standards.
- The results on this Calibration Certificate only relate to the values measured at the time of the calibration and the uncertainties quoted will not include allowance for the EUT long term drift, variation with environmental changes, vibration and shock during transportation, overloading, mishandling, misuse, and the capacity of any other laboratory to repeat the measurement.
- MaxLab Calibration Centre Limited shall not be liable for any loss or damage resulting from the use of the EUT.
- The copy of this Certificate is owned by MaxLab Calibration Centre Limited. No part of this Certificate may be reproduced without the prior written approval of MaxLab Calibration Centre Limited.

Page 1 of 2

Certificate No.

MLCN182934S

Calibration Data				
EUT Setting	Standard Reading	EUT Error from Setting	Calibration Uncertainty	EUT Specification
94 dB	94.0 dB	0.0 dB	0.20 dB	± 0.3 dB

- END -

Calibrated By:

Date:

Dan 23-Nov-18

Checked By:

Date:

K.O. Lo 23-Nov-18

Page 2 of 2

Contract No. EP/SP/66 Integrated Waste Mana	gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix I	Event / Action Plan for No	ise Exceedance

Frant	Actions to be taken by	Actions to be taken by	Actions to be taken by	Actions to be taken by
Event	Environmental Team as	Independent Environmental	Supervising Officer's	Contractor as
	immediate as practicable	Checker as immediate as	Representative as immediate	immediate as
		practicable	as practicable	practicable
Action Level being exceeded	to the IEC, SO and Contractor; 4. Discuss with the IEC and	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the SO accordingly; Advise the SO on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified). 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified). 	 Submit noise mitigation proposals to IEC and SO; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)
Limit Level being exceeded	 Inform IEC, SO, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and SO on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Discuss amongst SO, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; (The above actions should be taken within 2 working days after the exceedance is identified) 	In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and SO within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the SO until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Contract No. EP/SP/66 Integrated Waste Mana	5/12 agement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Ventur		
Appendix J	Noise Monitoring Data			

Location: Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 1 (M1/

N_S1)

Monitoring date: 4, 11, 18, 25 February 2019

Parameter: $L_{eq 30min}$

Noise source other than Nil

construction activities from

the Project:

Noise Monitoring data:

Date	Start time		End time	Weather	L _{eq 30min} dB(A)	Sound Level Meter Used	Calibrator Used
04-02- 2019	11:11	-	11:41	Sunny	53.3	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
11-02- 2019	11:21	-	11:51	Cloudy	52.6	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
18-02- 2019	11:20	-	11:50	Sunny	56.0	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
25-02- 2019	11:21	-	11:51	Sunny	53.0	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)

Location: Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 2 (M2/

N_S2)

Monitoring date: 4, 11, 18, 25 February 2019

 $Parameter: \qquad \qquad L_{eq\;30min}$

Noise source other than Nil

construction activities from

the Project:

Noise Monitoring data:

Date	Start time		End time	Weather	L _{eq 30min} dB(A)	Sound Level Meter Used	Calibrator Used
04-02- 2019	10:35	-	11:05	Sunny	55.3	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
11-02- 2019	10:45	-	11:15	Cloudy	55.6	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
18-02- 2019	10:47	-	11:17	Sunny	58.2	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
25-02- 2019	10:44	-	11:14	Sunny	54.6	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)

Location: Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 3 (M3 /

N_S3)

Monitoring date: 4, 11, 18, 25 February 2019

 $Parameter: \qquad \qquad L_{eq \; 30min}$

Noise source other than Air-co construction activities from

the Project:

Air-conditioning units nearby

Noise Monitoring data:

Date	Start time		End time	Weather	$\begin{array}{c} L_{eq \; 30min} \\ dB(A) \end{array}$	Sound Level Meter Used	Calibrator Used
04-02- 2019	9:59	-	10:29	Sunny	53.3	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
11-02- 2019	10:06	-	10:36	Cloudy	52.3	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
18-02- 2019	10:08	-	10:38	Sunny	71.9	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
25-02- 2019	10:02	-	10:32	Sunny	51.8	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)

Contract No. EP/SP/66. Integrated Waste Mana	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Ventur			
Appendix K	Waste Flow Table				

吉寶西格斯 - 振華聯營公司 Keppel Seghers - Zhen Hua Joint Venture

Monthly Summary Waste Flow Table for _____ (year)

Project: Integrated Waste Management Facilities, Phase I

Contract No.: EP/SP/66/12

Troject . II	oject : integrated waste Management Facilities, Fliase I										Com	nact No., Er	/51/00/12	
		Actual	Quantities of	Inert C&D	Materials Ger	nerated Mon	thly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill Sand	Imported Fill Public fill	Imported Fill Rock	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemica	l Waste	Others, e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	$(in ,000m^3)$	(in ,000m ³	(in ,000m ³)	(in $,000m^3)$		(in ,000 kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000 m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sub-total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0065
Sep	0	0	0	0	0	2.9619	0	0	0	0	0	0	0	0
Oct	0	0	0	0	0	3.0771	0	0	0	0	0	0	0	0.013
Nov	0	0	0	0	0	6.7871	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	59.0709	0	0	0	0	0	0.2	0.87	0
Total	0	0	0	0	0	71.8970	0	0	0	0	0	0.2	0.87	0.0195

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.

吉寶西格斯 - 振華聯營公司 Keppel Seghers - Zhen Hua Joint Venture

Monthly Summary Waste Flow Table for _____ (year)

Project: Integrated Waste Management Facilities, Phase I

Contract No.: EP/SP/66/12

I Toject . II	et i miegrated waste Management Pacinties, Phase I										Con	naci No., Er	/51/00/12	
		Actual	Quantities of	Inert C&D	Materials Ger	nerated Mon	nthly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)		Reused in other Projects	Disposed as Public Fill	Imported Fill Sand	Imported Fill Public fill	Imported Fill Rock	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemica	l Waste	Others, e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	$(in ,000m^3)$	(in ,000m ³	(in ,000m ³)	(in ,000m ³)	T	(in ,000 kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000 m ³)
Jan	0	0	0	0	0	82.6139	0	0	0	0	0	0	0	0.0065
Feb	0	0	0	0	0	46.7821	0	0	0	0	0	0	0	0
Mar														
Apr														
May														
Jun														
Sub-total	0	0	0	0	0	129.396	0	0	0	0	0	0	0	0.0065
Jul														
Aug														
Sep														
Oct														
Nov														
Dec														
Total	0	0	0	0	0	129.396	0	0	0	0	0	0	0	0.0065

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor : 1 full load of dumping truck being equivalent to 6.5m³ by volume.

Contract No. EP/SP/66/1 Integrated Waste Manag	ement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix L	Event / Action Plan for Co	oral Monitoring

Event	Action												
Ī	ET Leader II	EC S	о с	ontractor									
Exceedance 3	Check monitoring data Inform the IEC, SO and Contractor of the findings; Increase the monitoring to at least once a month to confirm findings; Propose mitigation measures for consideration	ET and the Contractor;	Discuss with the IEC 1. additional monitoring requirements and any other measures proposed by the 2. ET; Make the agreement on the measures to be 3. implemented.	notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO;									
Limit Level ¹ Exceedance	. Undertake Steps 1-4 as in 1. the Action Level Exceedance. If further 2. exceedance of Limit Level, propose enhancement measures for consideration.	ET and the Contractor;	Discuss with the IEC 1. additional monitoring requirements and any other measures proposed by the 2. ET; Make the agreement on the measures to be 3. implemented.	notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO;									

Contract No. EP/SP/66/12 Integrated Waste Manager		Keppel Seghers – Zhen Hua J	oint Venture
Appendix M	Event / Action Plan for \	White-Bellied Sea E	Eagle

Event	Action		
	Environmental	Audit Team	Contractor
	Team		
Absence of White-bellied Sea Eagle during a whole day of monitoring.	Inform audit team. Increase monitoring frequency to daily.	 Inform site engineer and contractor. If the absence remains: Review construction activities and noise monitoring records of the associated period; Identify potential causes of the absence; Propose remedial measures, such as change of construction method and sequence; Confirm the feasibility of the proposed remedial measures with site engineer and contractor; Discuss with environmental team about the effectiveness of the proposed remedial measures. 	Implement the agreed remedial measures.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1		Keppel Seghers – Zhen Hua Joint Venture
Appendix N	Exceedance Report	

Statistical Summary of Exceedances in the Reporting Period

	Wate	r Quality	
Location	Action Level	Limit Level	Total
B1	0	0	0
B2	0	0	0
В3	0	0	0
B4	0	0	0
CR1	0	0	0
CR2	2	0	2
F1	0	0	0
H1	0	0	0
S1	0	0	0
S2	1	0	1
S3	0	0	0
M1	1	1	2
·	Water Quality	(Intensive DCM)	
Location	Action Level	Limit Level	Total
I1	5	3	8
12	2	7	9
I3	4	6	10
I4	1	10	11
I5	3	4	7
I6	3	4	7
17	2	9	11
18	0	5	5
19	1	9	10
I10	3	5	8

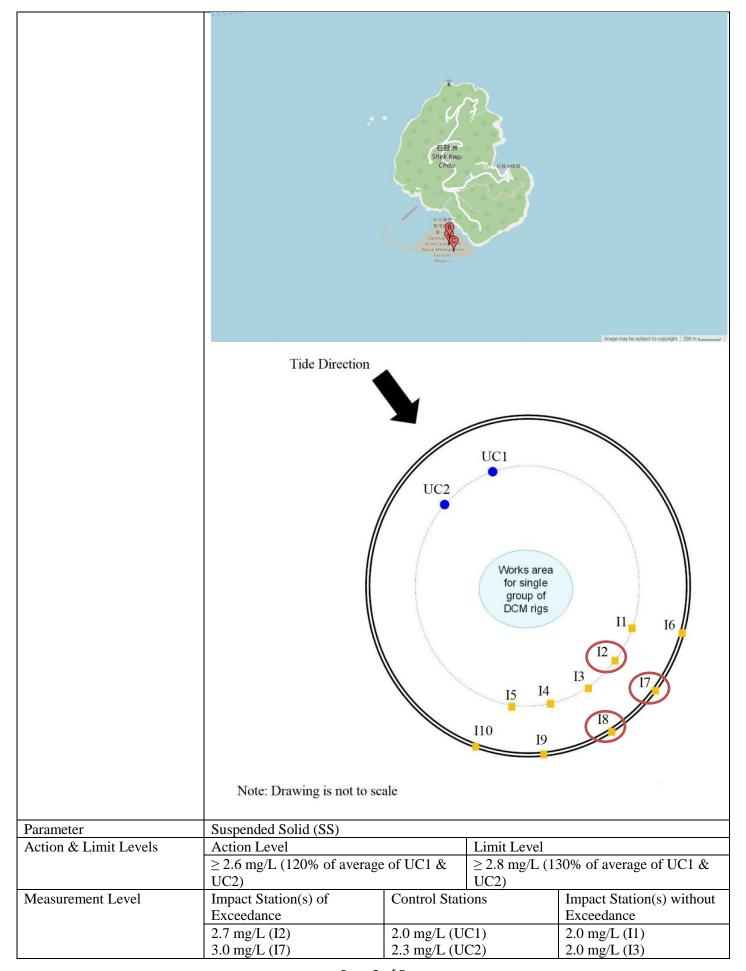
Noise			
Location	Action Level	Limit Level	Total
M1 / N_S1	0	0	0
M2 / N_S2	0	0	0
M3 / N_S3	0	0	0

Incident Report on Action Level or Limit Level Non-compliance

Project	Integrated Waste Management Facilities, Phase 1		
Date	1 February 2019 (Lab result received on 15 February 2019)		
Time	13:55 – 17:25 (Mid-Flood)		
Mid-Flood			
Monitoring Location	H B1 S1	PROPOSED OUTFALL + 4 PROPOSED 132KV SUBMARINE CABLES B3 S2 H1 SHEK KWU CHAU CR2 S3 CR1 PROPOSED RECLAIMED AREA FOR THE IWMF	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level	Limit Level	
	≥ 8.0 mg/L	$\geq 10.0 \text{ mg/L}$	
Possible reason for Action or Limit Level Non-compliance	Impact Station(s) of Exceedance 10.0 mg/L (M1) Works scheduled on site on 0 drilling, cone penetration test geotextile laying at reclamati	Control Stations 5.3 mg/L (C1) 5.7 mg/L (C2) 01/02 include ground investig t plant trial, sand blanket layir on area, DCM sample coring the strict was found to be from No.	ng at caisson seawall area, and DCM main works.
	M1 is located at unrelated str	ream direction (neither upstrea exceednace of this monitoring	

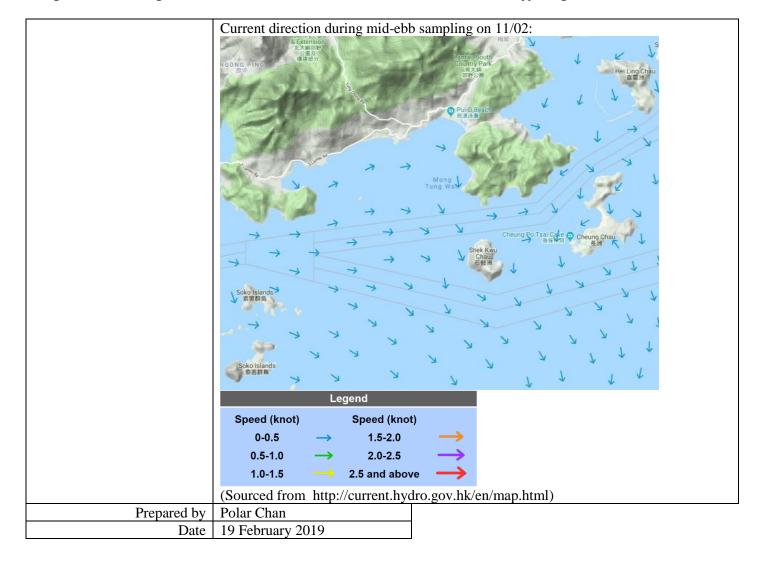
	From MMO monitoring records on 01/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity. Silt curtain checking was implemented on Shun Tat D12 (10:50), FTB-19 (15:30), ESC-61 (00:00) & ESC-62 (00:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day.		
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 04/02, where was no major observation of improper site practice that		
	might contribute to the increase in SS level was observed during the inspection.		
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.		
Remarks	Current direction during mid-flood sampling on 01/02:		
	Country Park 同文 Pull () Beach 日本 Tung Wan Cheung Po Tsai Cape ② Cheung Chau 报保 (利) Shek Kwu Chau 音響網 Soko Islands 索響解解		
	Legend		
	Speed (knot) Speed (knot)		
	0-0.5 → 1.5-2.0 →		
	0.5-1.0 → 2.0-2.5 →		
	1.0-1.5 — 2.5 and above —		
	(Sourced from http://current.hydro.gov.hk/en/map.html)		
Prepared by	Polar Chan		
Date	18 February 2019		

Incident Report on Action Level or Limit Level Non-compliance

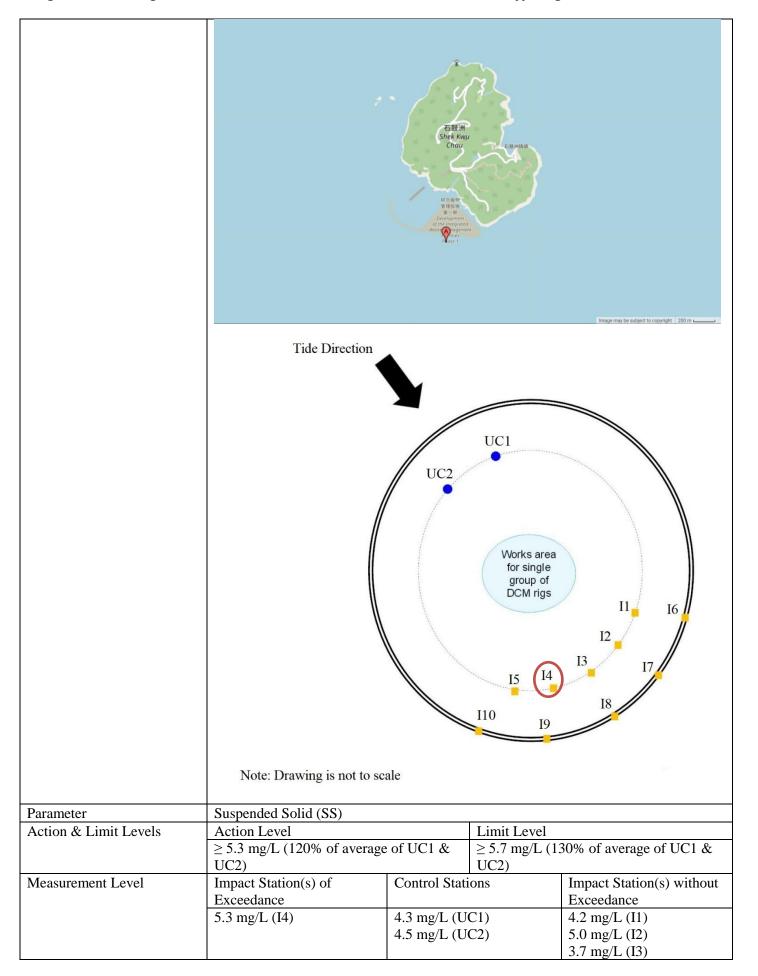

Project	Integrated Waste Management Facilities, Phase 1			
Date	4 February 2019 (Lab result received on 15 February 2019)			
Time	10:55 – 14:25 (Mid-Ebb)		<u>-</u>	
	Mid-F	Ebb		
Monitoring Location	M1, CR2, S2			
	+ B1 S1	PROPOSED OUTFALL + 4 PROPOSED 1 5 SUBMARINE CA PROPOSED RECLAME FOR THE IMMF		Key A PROPOSED 132KV SUBMARINE CABLE MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
retion & Emili Devels	$\geq 8.0 \text{ mg/L}$		$\geq 10.0 \text{ mg/L}$	
Measurement Level	Impact Station(s) of	Control Stati		Impact Station(s) without
Tyrougarement Be ver	Exceedance	Control State	Olio	Exceedance
	9.8 mg/L (M1)	3.5 mg/L (C1	1)	5.3 mg/L (B1)
	8.2 mg/L (CR2)	2.8 mg/L (C2	•	4.5 mg/L (B2)
	8.5 mg/L (S2)	2.0 mg/2 (02	-)	3.0 mg/L (B3)
				4.3 mg/L (B4)
				4.0 mg/L (F1)
				4.5 mg/L (H1)
				6.7 mg/L (CR1)
				4.8 mg/L (S1)
				7.5 mg/L (S3)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 04/02 include ground investigation (GI) work of borehole drilling, cone penetration test plant trial, sand blanket laying at both caisson seawall area and reclamation area, geotextile laying at reclamation area, DCM sample coring and DCM main works. Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. M1 and S2 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceednace of these monitoring stations are deemed to be unrelated to the Project. From MMO monitoring records on 04/02, MMO teams were arranged to two DCM			
	1 Tom white monitoring reco	145 UII U4/U2, I	viivio teatiis we	ic arranged to two DCM

	barges (ESC-61 & ESC-62) and one derrick barges (FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.		
	CR2 is located close to the works location within the Project site while the DCM main works scheduled in ESC-61 & ESC-62 were suspended due to maintenance works for DCM barges ESC-61 & ESC-62. No sand blanket laying works were carried out with referring to the site diary on that day. The absence of works might suggest that SS exceedance at CR2 is deemed to be unrelated to the Project.		
	Site tidiness in the present barges in the Project site were checked during weekly site		
	inspection on 04/02, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.		
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable		
	mitigation measures as per the Updated EM&A Manual.		
Remarks	Current direction during mid-ebb sampling on 04/02:		
	Rendu Sound PIN G の		
	Legend		
	Speed (knot) Speed (knot)		
	0-0.5 → 1.5-2.0 →		
	0.5-1.0 → 2.0-2.5 →		
	1.0-1.5 -> 2.5 and above ->		
, , , , , , , , , , , , , , , , , , ,	(Sourced from http://current.hydro.gov.hk/en/map.html)		
Prepared by	Polar Chan		
Date	18 February 2019		

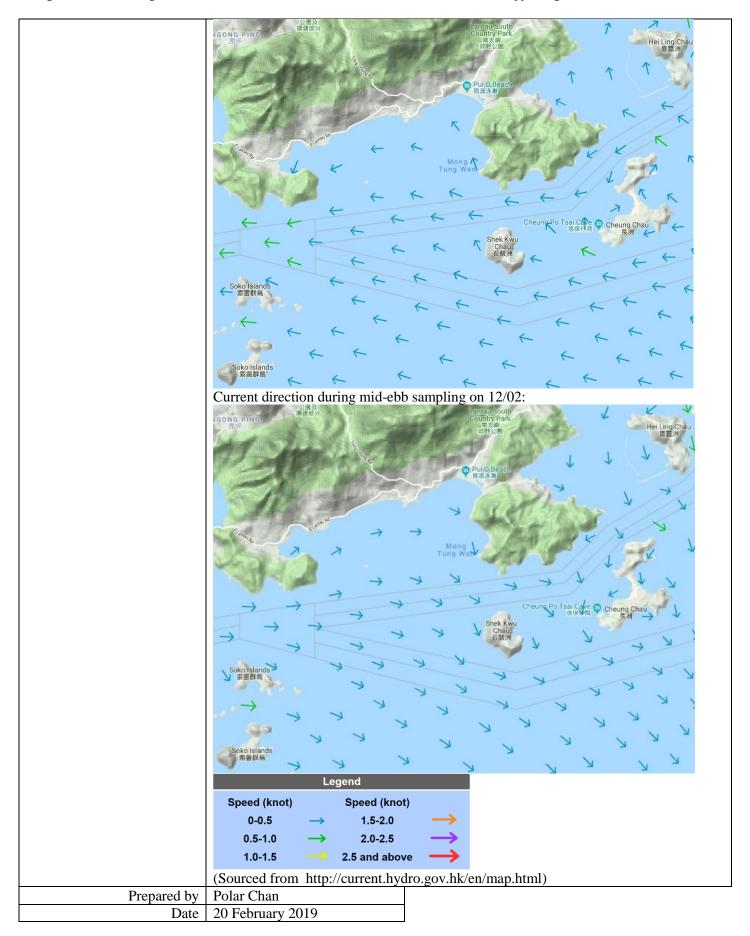
Incident Report on Action Level or Limit Level Non-compliance


Project	Integrated Waste Management Facilities, Phase 1	
Date	11 February 2019 (Lab result received on 18 February 2019)	
Time	08:38 – 12:08 (Mid-Flood)	
	14:52 – 18:22 (Mid-Ebb)	
	Mid-Flood	
Monitoring Location	I1 : A (N22°11.406 E113° 59.968)	
Monitoring Location	高級制 新設制 高級制 (Chau) 高級制 高級制 高級制 高級制 高級制 高級制 高級制 高級制	
	IS II II II II II II II III Works area for single group of DCM rigs	JC2 Tide Direction
Parameter	Suspended Solid (SS)	

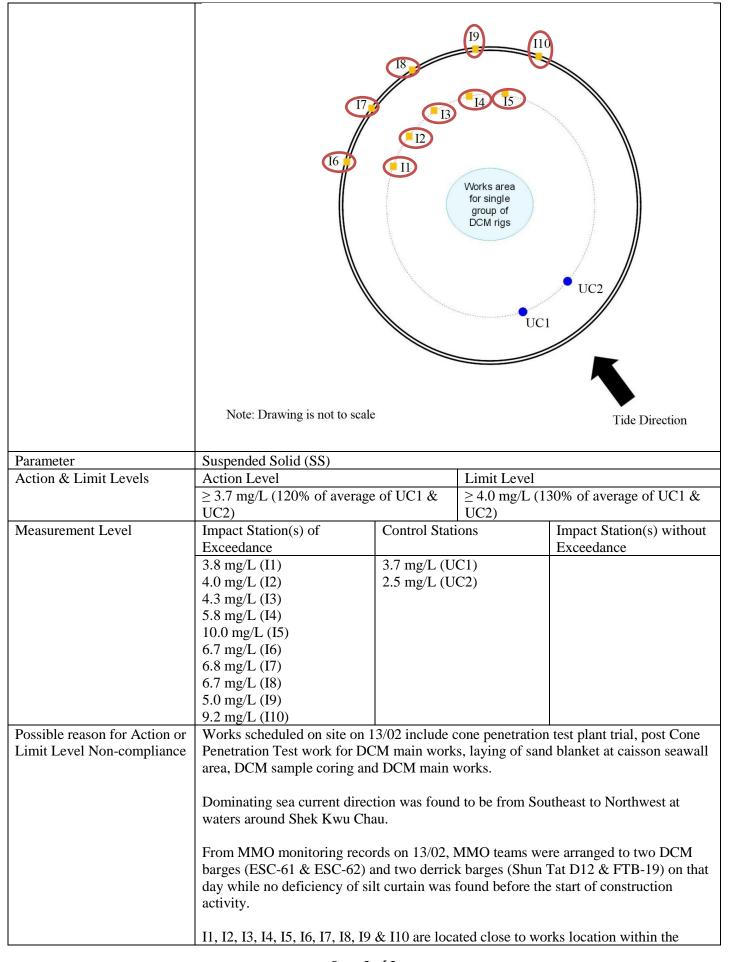
Action & Limit Levels	Action Level		Limit Level	
	\geq 2.7 mg/L (120% of average of UC1 &		\geq 3.0 mg/L (130% of average of UC1 &	
	UC2)		UC2)	•
Measurement Level	Impact Station(s) of	Control Stations		Impact Station(s) without
	Exceedance			Exceedance
	2.8 mg/L (I1)	2.2 mg/L (U	C1)	2.5 mg/L (I2)
		2.4 mg/L (U	C2)	2.0 mg/L (I3)
				2.2 mg/L (I4)
				2.0 mg/L (I5)
				2.0 mg/L (I6)
				2.2 mg/L (I7)
				2.2 mg/L (I8)
				2.2 mg/L (I9)
				N/A (I10)
Possible reason for Action or	Works scheduled on site on 1			
Limit Level Non-compliance	cone penetration test plant tri	al, DCM samp	ole coring and D	CM main works.
	Dominating sea current direc		to be from Sou	theast to Northwest at
	waters around Shek Kwu Cha	au.		
	E MMO ''	1 11/00	MMO :	1. DOM
	From MMO monitoring records on 11/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction			
	activity.			
	It is located along to the worl	za logotion wit	hin the Project (site while gilt contain
	I1 is located close to the worl checking was implemented o			
	(10:00) by the Contractor and			
	curtain was found on that day	•		•
	19 due to maintenance of FT		• •	
	dry season (Action Level: 8m		•	
	stations (including upstream			
	might suggest that the SS exc			
	inight suggest that the 55 exc	cedances at 11	is decined to be	e unrelated to the Project.
	Site tidiness in the present ba	rges in the Pro	piect site were cl	necked during weekly site
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 13/02, where was no major observation of improper site practice that			
	might contribute to the increase in SS level was observed during the inspection			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during			
	weekly inspection, and the Contractor is remained to implement all applicable			
	mitigation measures as per the Updated EM&A Manual.		* *	
	Mid-E	•		
Monitoring Location	I2 : A (N22°11.312 E113°59.			
	I7 : B (N22°11.345 E113°59.			
	I8 : C (N22°11.279 E113°59.			


Page 3 of 5

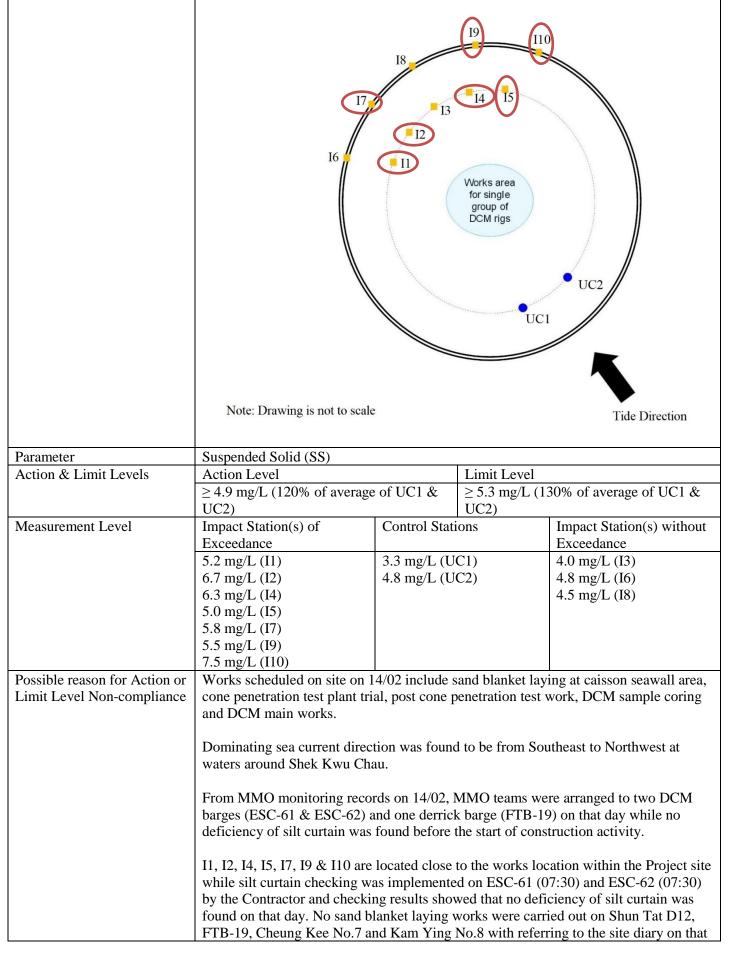
	2.5 7 (70)		
	3.5 mg/L (I8)	2.0 mg/L (I4)	
		2.0 mg/L (I5)	
		2.5 mg/L (I6)	
		2.3 mg/L (I9)	
		2.0 mg/L (I10)	
Possible reason for Action or Limit Level Non-compliance		1/02 include sand blanket laying at caisson seawall area, al, DCM sample coring and DCM main works.	
	Dominating sea current direct waters around Shek Kwu Cha	tion was found to be from Northwest to Southeast at au.	
	barges (ESC-61 & ESC-62) a	rds on 11/02, MMO teams were arranged to two DCM and two derrick barges (Shun Tat D12 & FTB-19) on that It curtain was found before the start of construction	
	curtain checking was implem D12 (10:00) by the Contractor curtain was found on that day 19 due to maintenance of FT dry season (Action Level: 8m stations (including upstream)	to the works location within the Project site while silt nented on ESC-61 (09:00), ESC-62 (08:45) and Shun Tat or and checking results showed that no deficiency of silt y. No sand blanket laying work was carried out on FTB-B-19 on that day. When compared to the baseline data of ng/L & Limit Level: 10mg/L), most of the monitoring control station UC1 and UC2) were relatively low, it ceedances at I2, I7 & I8 are deemed to be unrelated to the	
	inspection on 13/02, where w might contribute to the increase	arges in the Project site were checked during weekly site was no major observation of improper site practice that ase in SS level was observed during the inspection.	
Actions taken / to be taken		al performance of the Project will be continued during the ontractor is remained to implement all applicable	
	mitigation measures as per the Updated EM&A Manual.		
Remarks		the monitoring station positioning on land.	
Remarks	Current direction during mid-		
	NG PING	Danteu South Country Park Entry Park SURVAN	
	+ + + + + + + + + + + + + + + + + + +	Cheuna Po Tsai Care Cheung Chau	
	Soko islands ^{余言群島}		
	Soko Islands ^R 養酵稿		



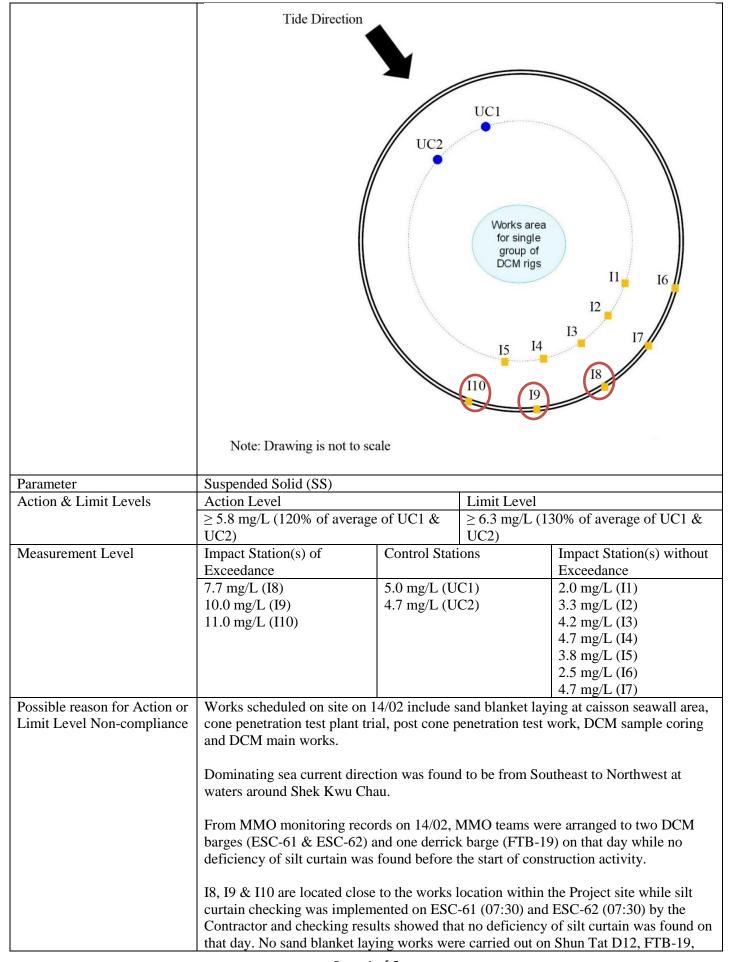
Project	Integrated Waste Management Facilities, Phase 1				
Date	12 February 2019 (Lab result received on 19 February 2019)				
Time	09:22 – 12:52 (Mid-Flood)				
	15:07 – 19:00 (Mid-Ebb)				
	Mid-Flood				
Monitoring Location	I6: A (N22°11.406 E113° 59.968)				
	I9 : B (N22°11.415 E113° 59.032)				
	T石製洲 Shek Kwy Chau 和 Sale Man Well Sale Man Well Sale Man Well Man Work Management First Server First Server First 1	Image may be subject to copyright 200 m			
	Note: Drawing is not to scale	UC2			
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level Limit Level				


	≥ 3.5 mg/L (120% of average of UC1 & UC2)		≥ 3.8 mg/L (130% of average of UC1 & UC2)	
Measurement Level	Impact Station(s) of	Control Stat	,	Impact Station(s) without
Treasurement Bever	Exceedance	Control Stations		Exceedance
	3.5 mg/L (I6)	3.2 mg/L (U	(C1)	2.5 mg/L (I1)
	4.0 mg/L (I9)	2.7 mg/L (U		2.3 mg/L (I2)
				2.5 mg/L (I3)
				2.7 mg/L (I4)
				N/A (I5)
				2.5 mg/L (I7)
				3.0 mg/L (I8)
				N/A (I10)
Possible reason for Action or	Works scheduled on site on 1			-
Limit Level Non-compliance	blanket laying at caisson seav	wall area, DCI	M sample coring	g and DCM main works.
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.			utheast to Northwest at
	From MMO monitoring records on 12/02, MMO teams were arranged to two DCM			
	barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that			
	day while no deficiency of silt curtain was found before the start of construction activity. I6 & I9 are located close to the works location within the Project site while silt curtain checking was implemented on ESC-61 (08:00), ESC-62 (08:00) and Shun Tat D12 (11:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket playing work was carried out on FTB-19 with referring to the site diary on that day. When compared to the baseline data of dry season (Action Level: 8mg/L & Limit Level: 10mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedances at I6 & I9 are deemed to be unrelated to the Project.			
				8:00) and Shun Tat D12 t no deficiency of silt rk was carried out on FTB- ared to the baseline data of most of the monitoring were relatively low, it
	Site tidiness in the present barges in the Project site were checked during weekly inspection on 13/02, where was no major observation of improper site practice t might contribute to the increase in SS level was observed during the inspection.		proper site practice that	
Actions taken / to be taken	weekly inspection, and the Co	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable		
	mitigation measures as per the Updated EM&A Manual.			
Monitoring Location	Mid-Ebb I4 : A (N22°11.312 E113°59.230)			
Monitoring Location	14 . A (11/2/ 11.31/ E113/39.	<i>430)</i>		

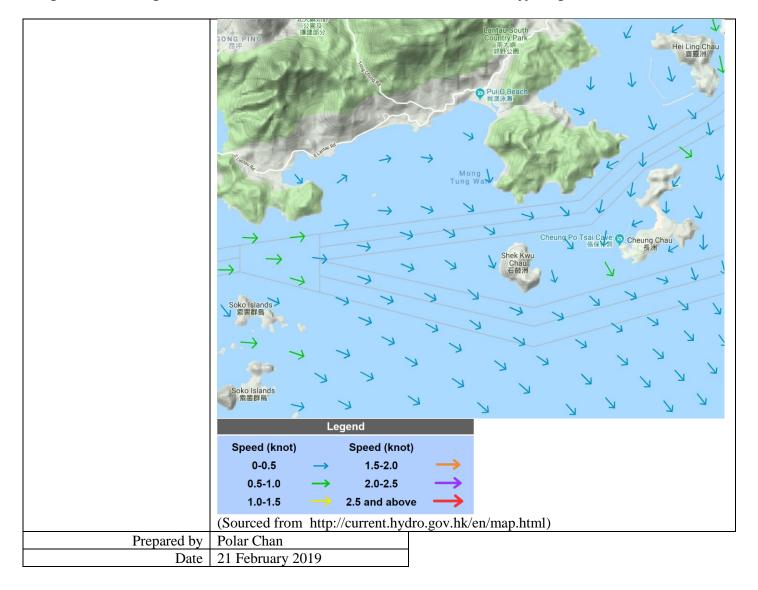
	2.3 mg/L (I5)			
	3.3 mg/L (I6)			
	4.8 mg/L (I7)			
	3.3 mg/L (I8)			
	3.0 mg/L (I9)			
	4.2 mg/L (I10)			
Possible reason for Action or	Works scheduled on site on 12/02 include Cone Penetration Test plant trial, sand			
Limit Level Non-compliance	blanket laying at caisson seawall area, DCM sample coring and DCM main works.			
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.			
	From MMO monitoring records on 12/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.			
	I4 is located close to the works location within the Project site while silt curtain checking was implemented on ESC-61 (08:00), ESC-62 (08:00) and Shun Tat D12 (11:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket playing work was carried out on FTB-19 with referring to the site diary on that day. When compared to the baseline data of dry season (Action Level: 8mg/L & Limit Level: 10mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedances at I4 is deemed to be unrelated to the Project.			
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 13/02, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the			
	weekly inspection, and the Contractor is remained to implement all applicable			
	mitigation measures as per the Updated EM&A Manual.			
Remarks	Note: N/A – cancelled due to the monitoring station positioning on land.			
	Current direction during mid-flood sampling on 12/02:			

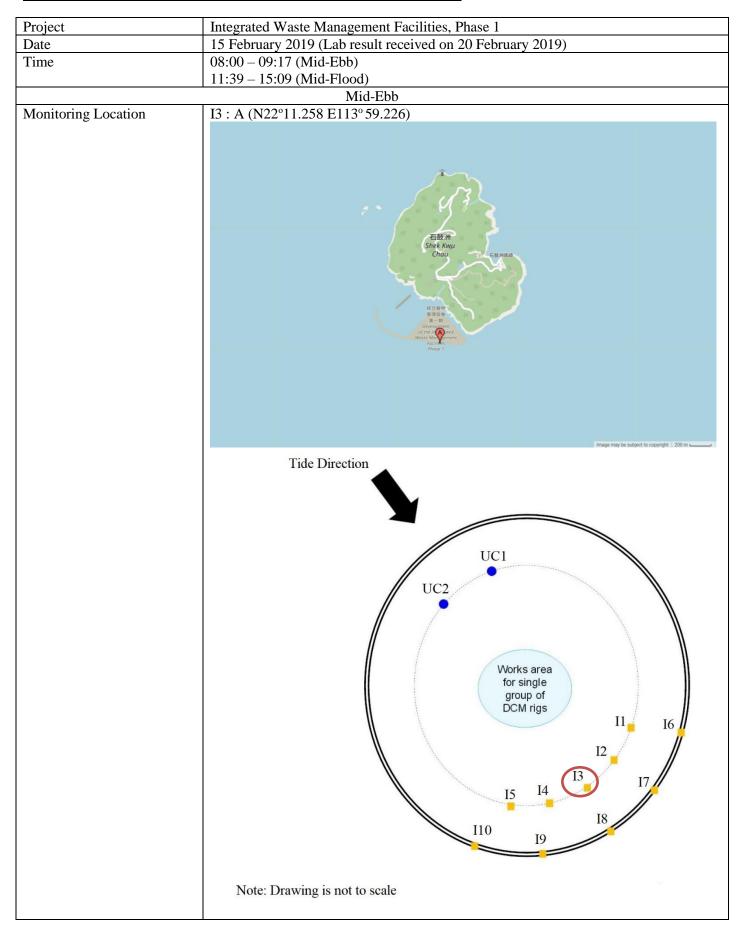


Project	Integrated Waste Management Facilities, Phase 1		
Date	13 February 2019 (Lab result received on 19 February 2019)		
Time	10:05 – 13:35 (Mid-Flood)		
	Mid-Flood		
Monitoring Location	I1 : A (N22°11.342 E113° 59.010)		
	I2 : B (N22°11.348 E113° 59.030)		
	I3 : C (N22°11.395 E113° 59.069)		
	I4 : D (N22°11.406 E113° 59.055)		
	I5 : E (N22°11.438 E113° 59.107)		
	I6: F (N22°11.308 E113° 58.944)		
	I7 : G (N22°11.383 E113° 58.956)		
	I8: H (N22°11.415 E113° 58.983)		
	I9 : I (N22°11.447 E113° 59.026)		
	I10 : J (N22°11.475 E113° 59.045)		
	Shek Kwy Chou She Bit H Bit Bit Bit H Bit Bit Bit H Bit Bit Bit H Bit		

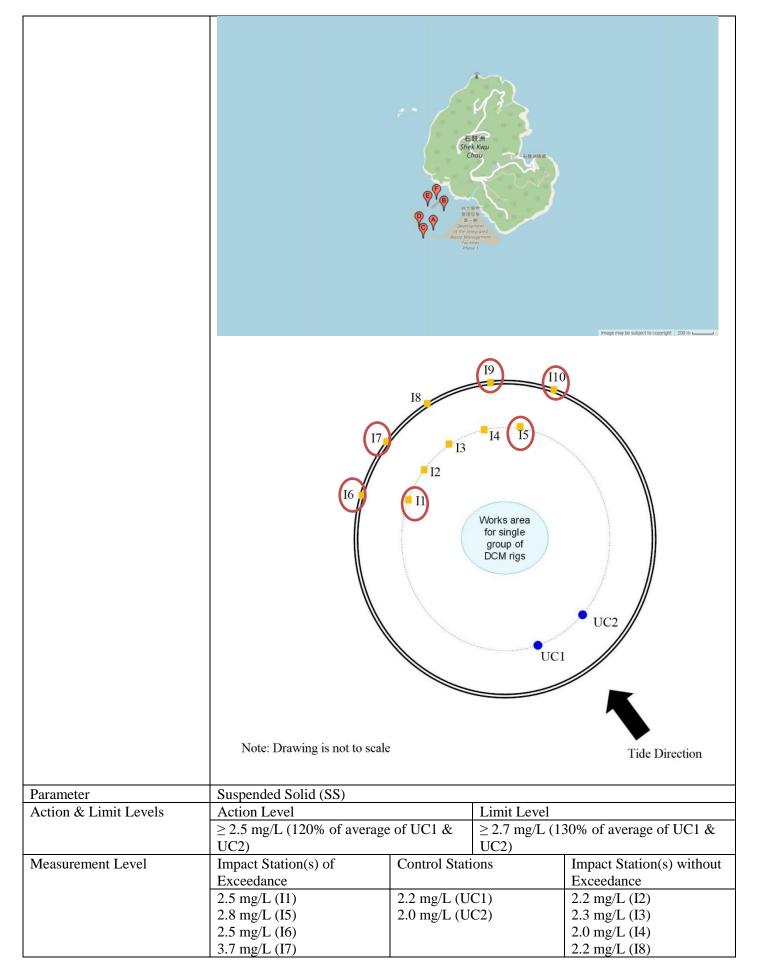


	project site while silt curtain checking was implemented on ESC-61 (08:50), ESC-62 (08:40) and Shun Tat D12 (10:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket playing works were carried out on FTB-19 & Cheung Kee No.7 with referring to the site diary on that day. It might suggest that the SS exceedances are deemed to be unrelated to the Project. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 13/02, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-flood sampling on 13/02: Comparison Comparison			
Prepared by				
Date	20 February 2019			

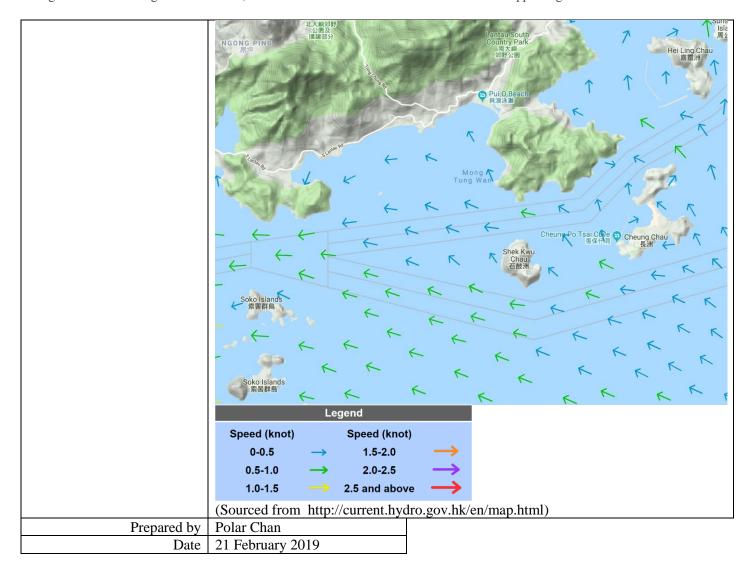

Project	Integrated Waste Management Facilities, Phase 1		
Date	14 February 2019 (Lab result received on 20 February 2019)		
Time	10:47 – 14:17 (Mid-Flood)		
	16:55 – 19:00 (Mid-Ebb)		
	Mid-Flood		
Monitoring Location	I1 : A (N22°11.312 E113° 59.909)		
	I2 : B (N22°11.351 E113° 58.976)		
	I4 : C (N22°11.420 E113° 59.024)		
	I5 : D (N22°11.448 E113° 59.046)		
	I7 : E (N22°11.348 E113° 58.912)		
	I9 : F (N22°11.474 E113° 58.947)		
	I10 : G (N22°11.485 E113° 59.008)		
	Shek Kwu Chau Si a B B B B B B B B B B B B B B B B B B B		



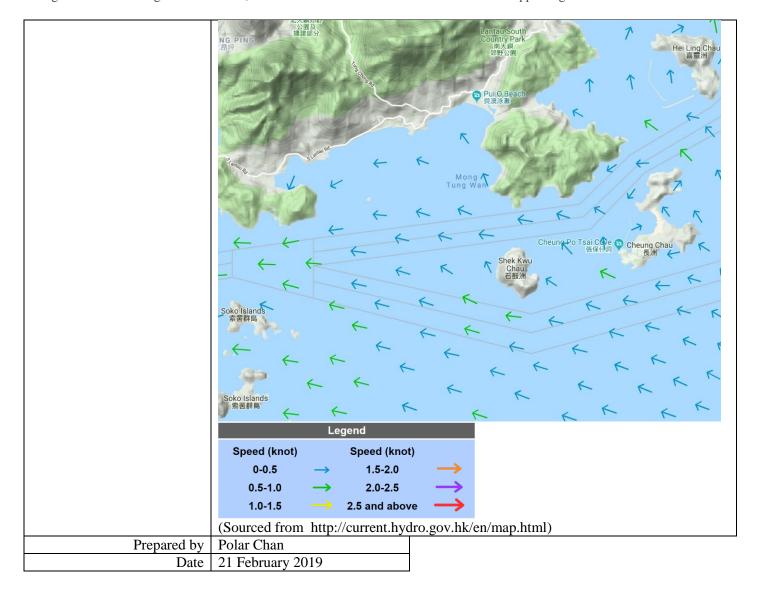
	day. It might suggest that SS exceedances are deemed to be unrelated to the Project.				
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 13/02, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the				
	weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.				
	Mid-Ebb				
Monitoring Location	I8 : A (N22°11.259 E113° 59.248) I9 : B (N22°11.180 E113° 59.207) I10 : C (N22°11.170 E113° 59.147)				
	日設州 Shek Kwy Chau 18日 18日 18日 18日 18日 18日 18日 18日 18日 18日				



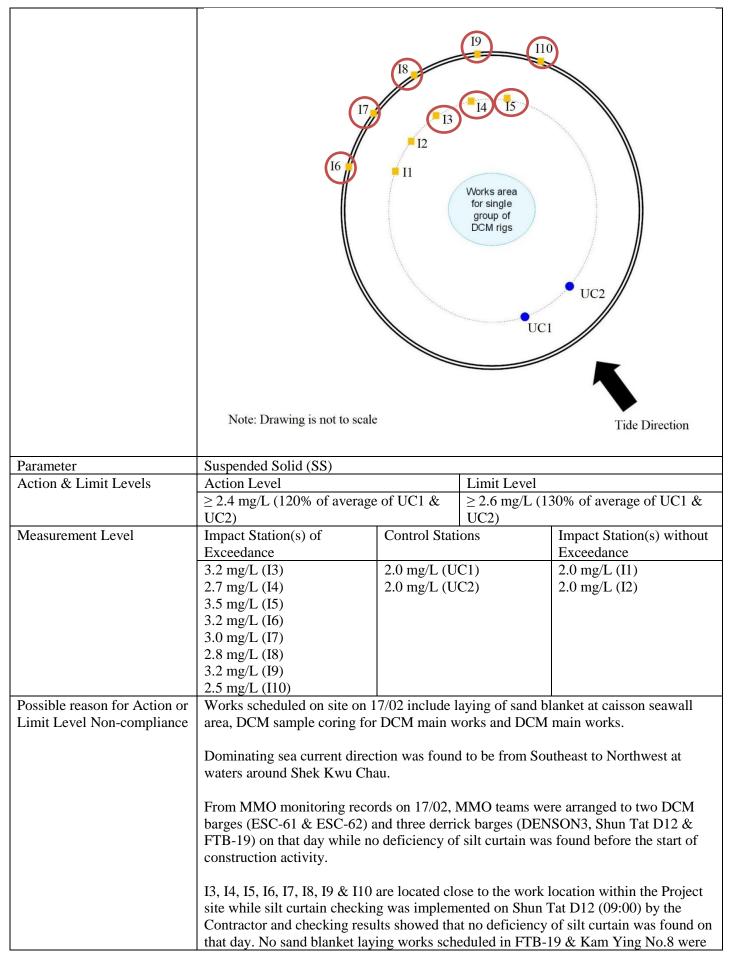
	Cheung Kee No.7 and Kam Ying No.8 with referring to the site diary on that day. It			
	might suggest that SS exceedances are deemed to be unrelated to the Project.			
	Site tidiness in the present barges in the Project site were checked during weekly site			
	inspection on 13/02, where was no major observation of improper site practice that			
	might contribute to the increase in SS level was observed during the inspection.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the			
	weekly inspection, and the Contractor is remained to implement all applicable			
	mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-flood sampling on 14/02:			
	Country Park 是其他的			
	Soko Islands 索置群島 Soko Islands 索置群島			
	Current direction during mid-ebb sampling on 14/02:			



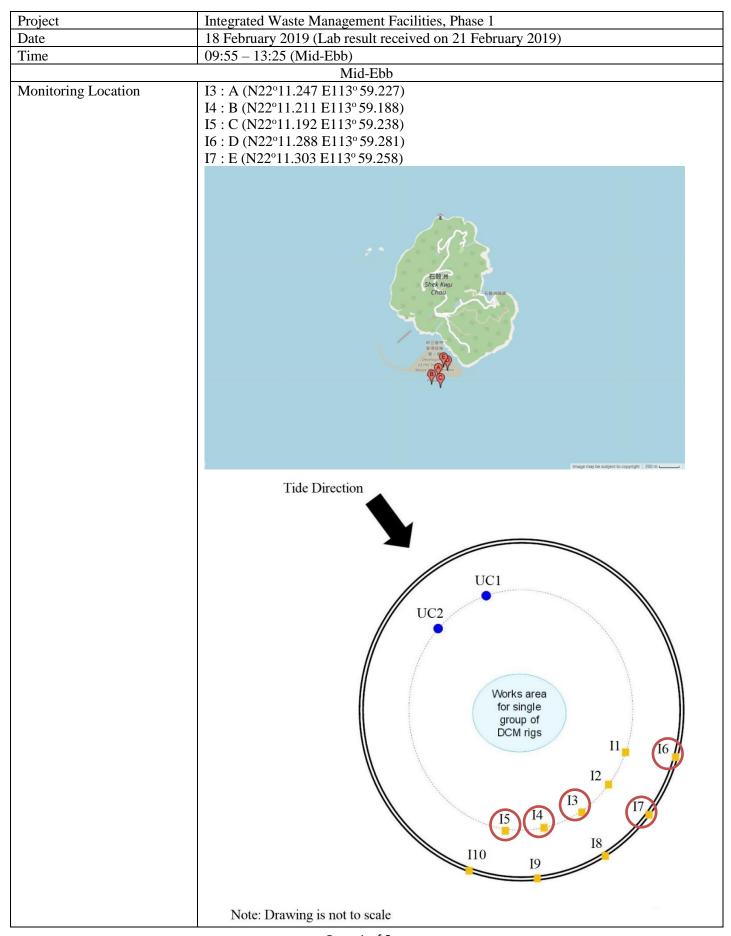
Parameter	Suspended Solid (SS)				
Action & Limit Levels			Limit Level	Limit Level	
	\geq 4.0 mg/L (120% of average	e of UC1 &	\geq 4.3 mg/L (1)	30% of average of UC1 &	
	UC2)		UC2)	-	
Measurement Level	Impact Station(s) of	Control Stat	ions	Impact Station(s) without	
	Exceedance			Exceedance	
	4.0 mg/L (I3)	4.0 mg/L (UC1) 2.7 mg/L (UC2)		2.8 mg/L (I1)	
				3.8 mg/L (I2)	
				2.7 mg/L (I4)	
				2.7 mg/L (I5)	
				2.3 mg/L (I6)	
				3.2 mg/L (I7)	
				3.3 mg/L (I8)	
				2.5 mg/L (I9)	
				2.5 mg/L (I10)	
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 15/02 include sand blanket laying at caisson seawall area, cone penetration test plant trial, post cone penetration tests for DCM main works, DCM sample coring and DCM main works. Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau. From MMO monitoring records on 15/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity. I3 is located close to the works location within the Project site while silt curtain checking was implemented on ESC-61 (08:00) and ESC-62 (09:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying works were carried out at Shun Tat D12 & FTB-19 with referring to the site diary on the day. Since most of the monitoring locations had relatively low SS results (including upstream control station UC1 and UC2), it might				
Actions taken / to be taken	suggest that the SS exceedances at I3 is deemed to be unrelated to the Project. Examination of environmental performance of the Project will be continued during the				
	weekly inspection, and the Contractor is remained to implement all applicable				
	mitigation measures as per the Updated EM&A Manual.				
	Mid-F				
Monitoring Location	I1: A (N22°11.322 E113° 58.997)				
	I5 : B (N22°11.423 E113° 59.057)				
	I6: C (N22°11.283 E113° 58.941)				
	I7 : D (N22°11.341 E113° 58.918)				
	I9 : E (N22°11.448 E113° 58.965)				
	I10 : F (N22°11.483 E113° 59.014)				


Page 3 of 5

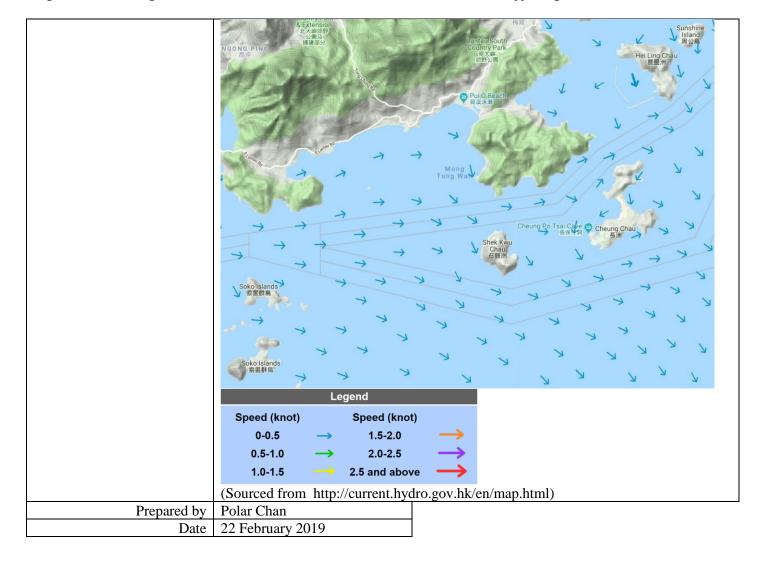
	2.8 mg/L (I9)				
Describite manager for Astion on	4.0 mg/L (I10)				
Possible reason for Action or Limit Level Non-compliance	• •				
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.				
	From MMO monitoring records on 15/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.				
	I1, I5, I6, I7, I9 and I10 are located close to the works location within the Project site while silt curtain checking was implemented on ESC-61 (08:00) and ESC-62 (09:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying works were carried out at Shun Tat D12 & FTB-19 with referring to the site diary on the day. Since most of the monitoring locations had relatively low SS results (including upstream control station UC1 and UC2), it might suggest that the SS exceedances at I1, I5, I6, I7, I9 and I10 are deemed to be unrelated to the Project.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the				
	weekly inspection, and the Contractor is remained to implement all applicable				
	mitigation measures as per the Updated EM&A Manual.				
Remarks					
Remarks	Current direction during mid-ebb sampling on 15/02: County Park Cheung Po Tsai Cafe ② Cheung Chau Chaung C				

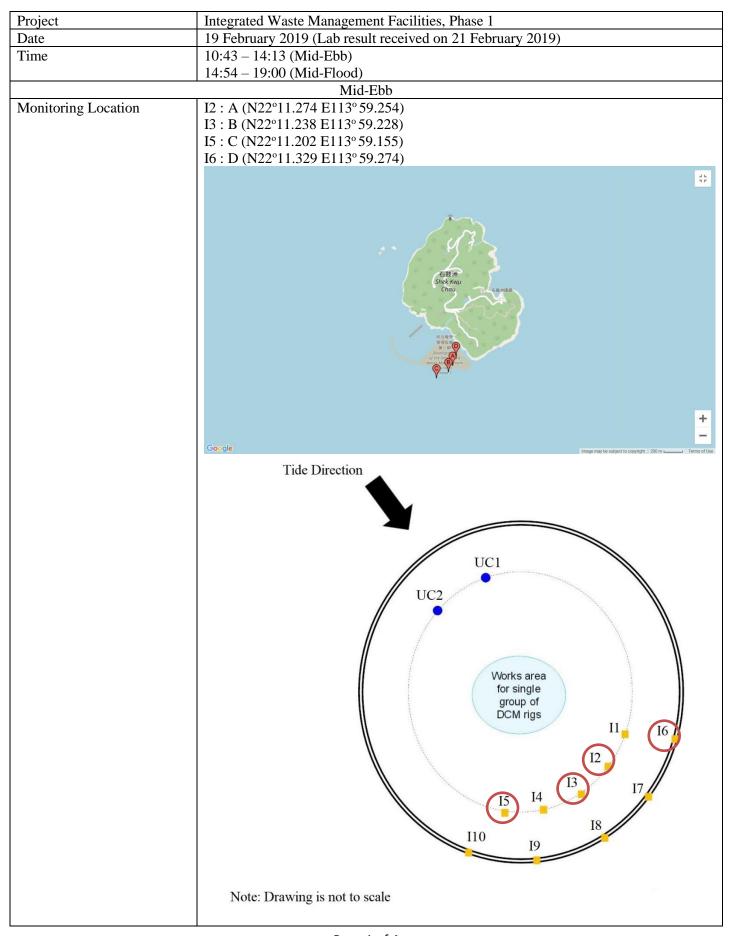


Project	Integrated Waste Management Facilities, Phase 1				
Date	16 February 2019 (Lab result received on 20 February 2019)				
Time	12:51 – 16:21 (Mid-Flood)				
	Mid-Flood				
Monitoring Location	12 : A (N22°11.350 E113° 58.994)				
	19 110 18 11				
	Note: Drawing is not to scale Tide Direction				
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level Limit Level				
	\geq 4.6 mg/L (120% of average of UC1 & \geq 5.0 mg/L (130% of average of UC1 & UC2)				

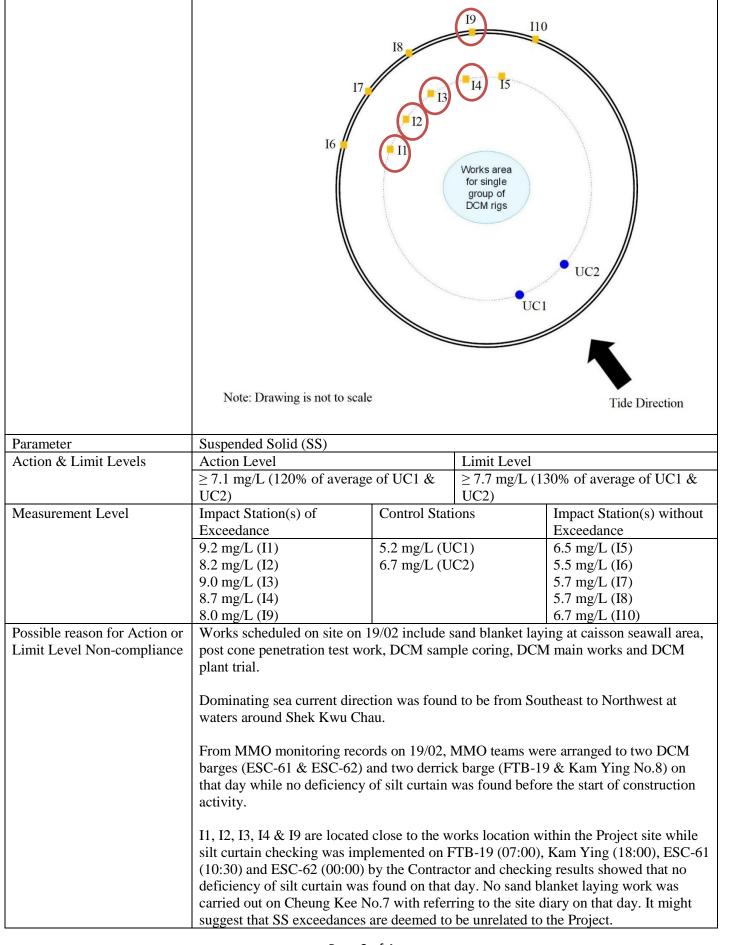

Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without		
	Exceedance		Exceedance		
	4.8 mg/L (I2)	3.2 mg/L (UC1)	4.2 mg/L (I1)		
	_	4.5 mg/L (UC2)	2.2 mg/L (I3)		
			2.0 mg/L (I4)		
			2.0 mg/L (I5)		
			4.3 mg/L (I6)		
			4.0 mg/L (I7)		
			3.0 mg/L (I8)		
			3.8 mg/L (I9)		
			2.0 mg/L (I10)		
Possible reason for Action or		16/02 include laying of sand b			
Limit Level Non-compliance		ant trial, post cone penetration			
	DCM sample coring for DCN	M main works and DCM main	works.		
	•	ction was found to be from Sou	utheast to Northwest at		
	waters around Shek Kwu Chau.				
	From MMO monitoring records on 16/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.				
	activity.				
	I2 is located close to the work location within the Project site while silt curtain checking was implemented on ESC-61 (08:15), ESC-62 (07:20), Shun Tat D12				
	(11:00) and FTB-19 (12:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying work				
	scheduled in Kam Ying No.8 was carried out with referring to site diary on that day.				
	When compared to the baseline data of dry season (Action Level: 8mg/L & Limit				
	Level: 10mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedance at I2 is				
	deemed to be unrelated to the Project.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the				
		-	_		
	weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.				
Remarks	2	-			
кетагкѕ	Current direction during mid-flood sampling on 16/02:				

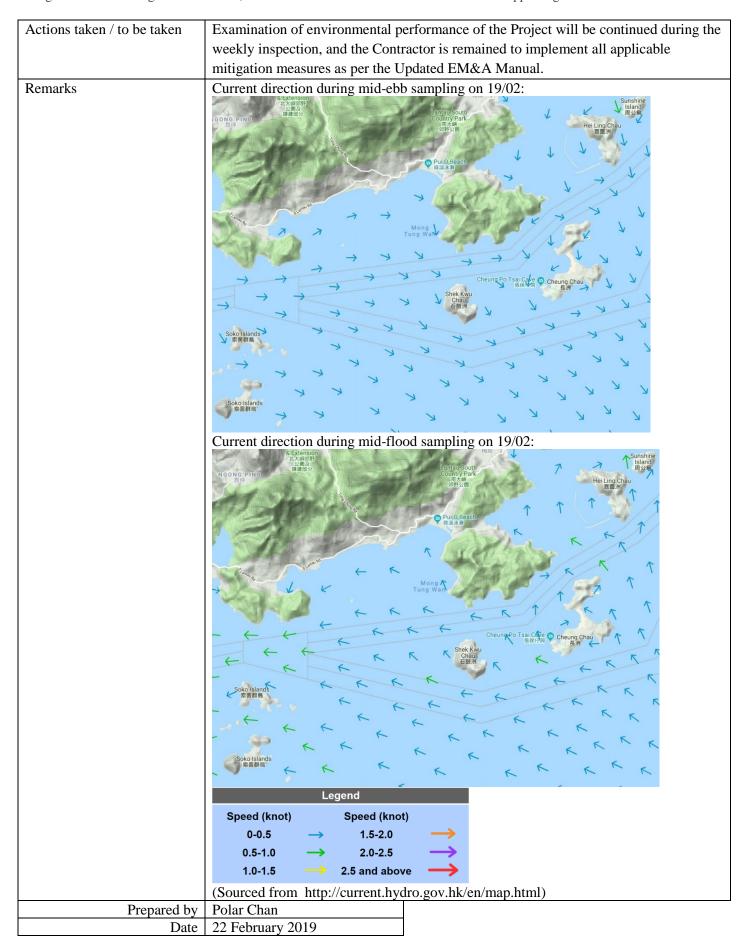
Project	Integrated Waste Management Facilities, Phase 1				
Date	17 February 2019 (Lab result received on 21 February 2019)				
Time	14:04 – 17:34 (Mid-Flood)				
	Mid-Flood				
Monitoring Location	I3 : A (N22°11.374 E113° 59.005)				
	I4 : B (N22°11.412 E113° 59.034)				
	I5 : C (N22°11.429 E113° 59.082)				
	I6 : D (N22°11.265 E113° 58.899)				
	I7 : E (N22°11.327 E113° 58.916)				
	I8 : F (N22°11.385 E113° 58.923)				
	I9 : G (N22°11.421 E113° 58.975)				
	I10 : H (N22°11.469 E113° 59.040)				
	Shock King Character State of the Integrated Ages Agency of the Integrated Agency of the In				

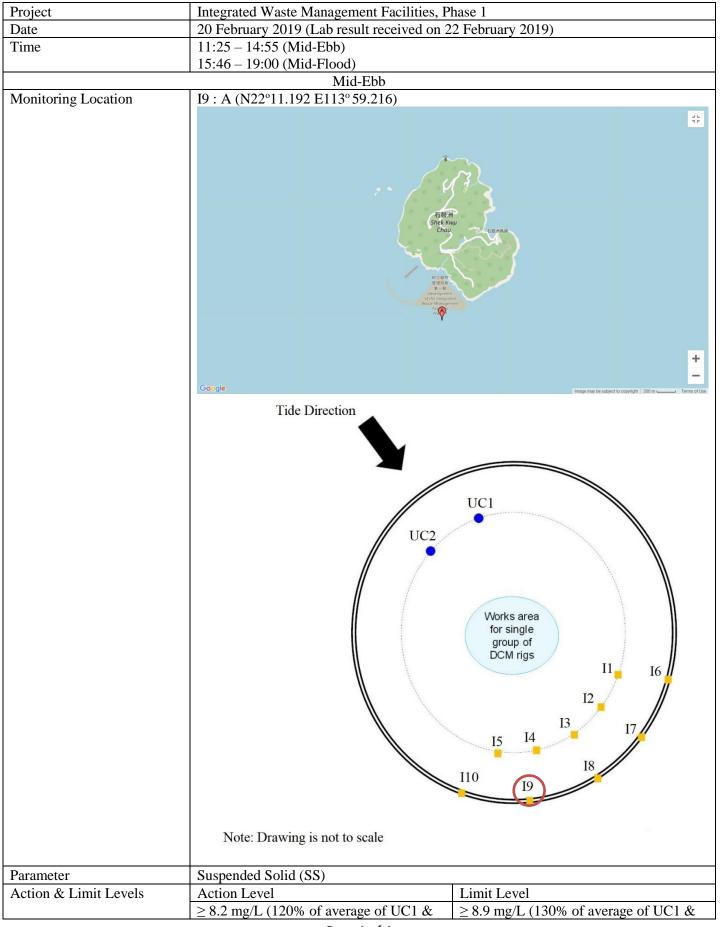



Actions taken / to be taken	carried out with referring to site diary on that day. No DCM main works scheduled in ESC-61 & ESC-62 were carried out with referring to site diary on that day. When compared to the baseline data of dry season (Action Level: 8mg/L & Limit Level: 10mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedance at I3, I4, I5, I6, I7, I8, I9 & I10 are deemed to be unrelated to the Project. Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable			
D 1	mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-flood sampling on 17/02: Country Park Country P			
	1.0-1.5 —> 2.5 and above —>			
	(Sourced from http://current.hydro.gov.hk/en/map.html)			
Prepared by	Polar Chan			
Date	22 February 2019			

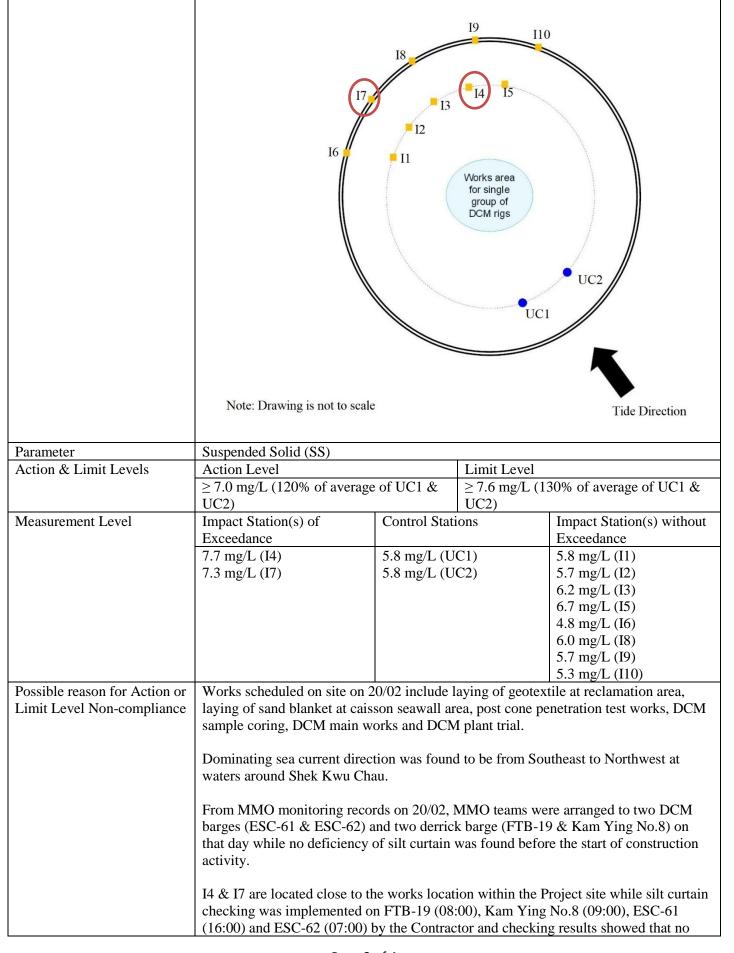
Page 1 of 3

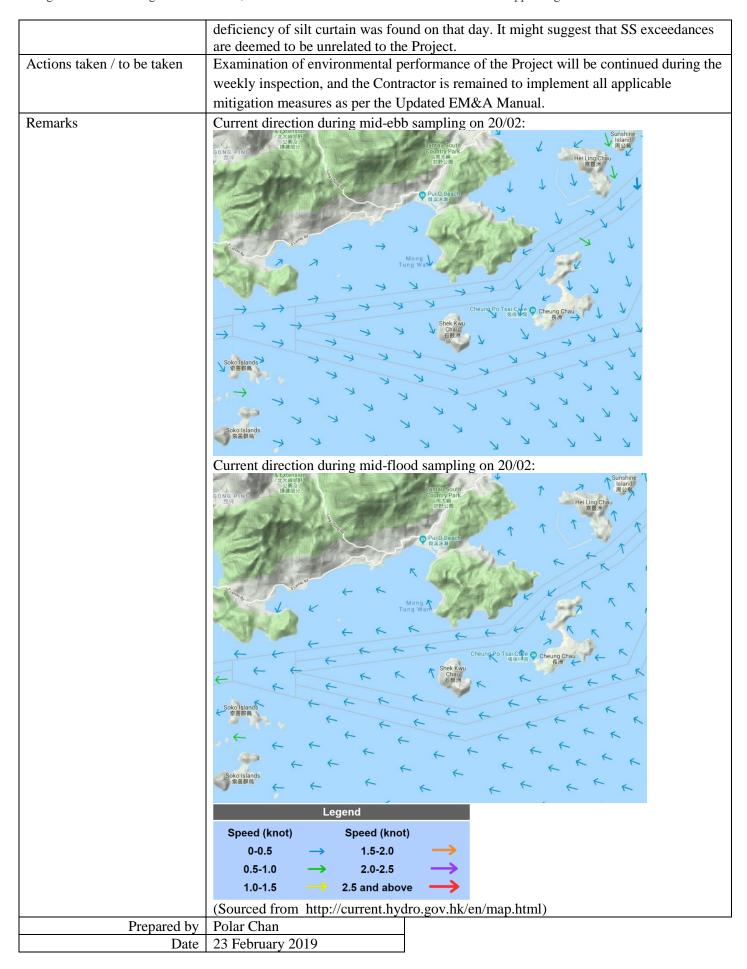

Parameter	Suspended Solid (SS)					
Action & Limit Levels	Action Level		Limit Level			
	\geq 4.5 mg/L (120% of average of UC1 &		\geq 4.9 mg/L (130% of average of UC1 &			
	UC2)		UC2)			
Measurement Level	Impact Station(s) of	Control Stations		Impact Station(s) without		
	Exceedance			Exceedance		
	5.0 mg/L (I3)	3.8 mg/L (UC1)		3.8 mg/L (I1)		
	6.5 mg/L (I4)	3.7 mg/L (UC2)		3.0 mg/L (I2)		
	7.3 mg/L (I5)			3.5 mg/L (I8)		
	5.5 mg/L (I6)			4.0 mg/L (I9)		
	5.3 mg/L (I7)			3.7 mg/L (I10)		
Possible reason for Action or	Works scheduled on site on 1					
Limit Level Non-compliance						
	for DCM main works and DCM main works.					
	Dominating sea current direction was found to be from Southeast to Northwest at					
	waters around Shek Kwu Chau. From MMO monitoring records on 18/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on th day while no deficiency of silt curtain was found before the start of construction activity.					
	I3, I4, I5, I6 & I7 are located close to the work location within the Project sit no sand blanket laying works scheduled in FTB-19, Shun Tat D12, Cheung I & Kam Ying No.8 were carried out with referring to site diary on that day. No main works scheduled in ESC-61 & ESC-62 were carried out due to adverse condition on that day. It might suggest that the SS exceedance at I3, I4, I5, I6 deemed to be unrelated to the Project.					
Actions taken / to be taken	Examination of environmenta	al performance	e of the Project	will be continued during the		
	weekly inspection, and the Contractor is remained to implement all applicable					
	mitigation measures as per the Updated EM&A Manual.					
Remarks	Current direction during mid-ebb sampling on 18/02:					

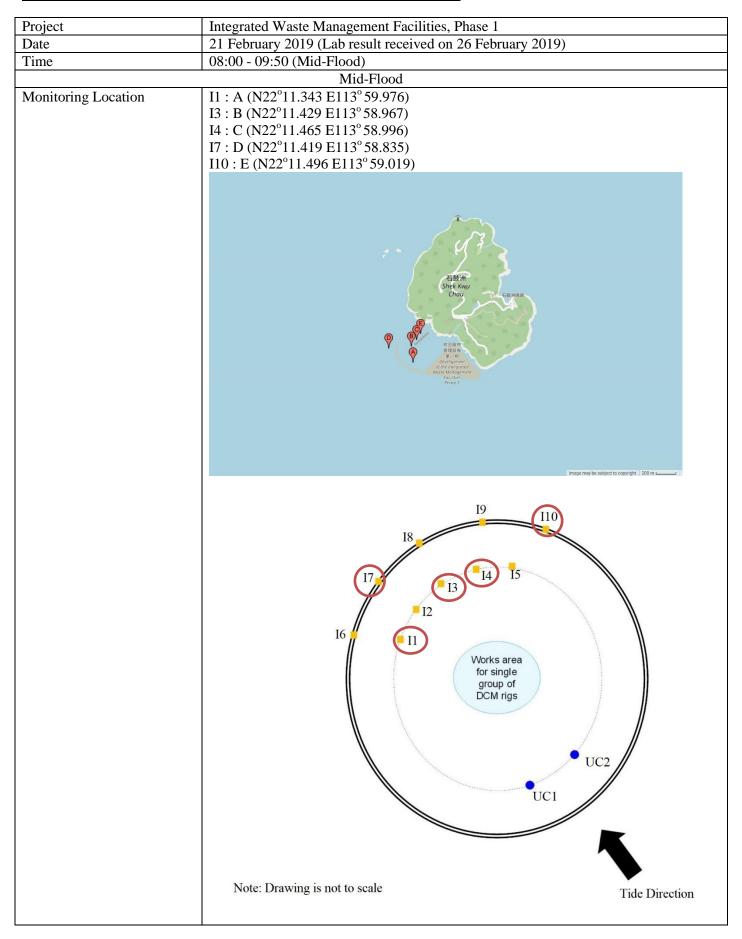


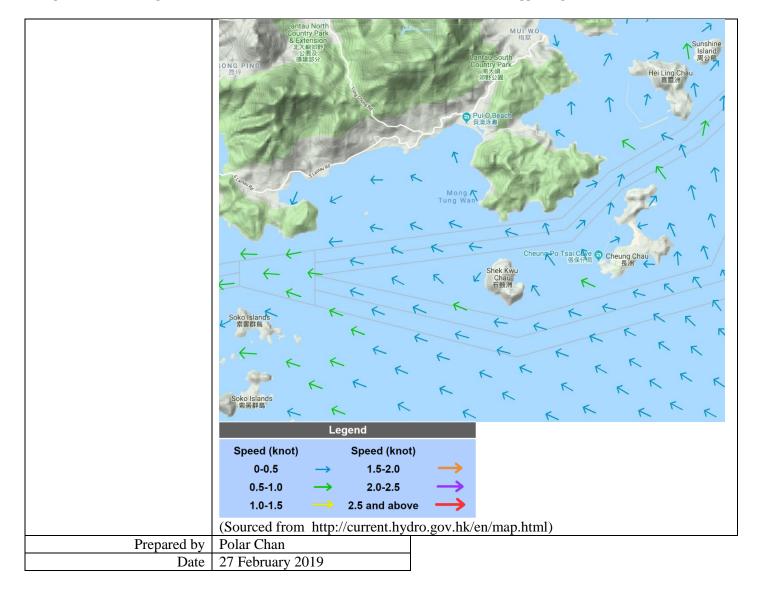


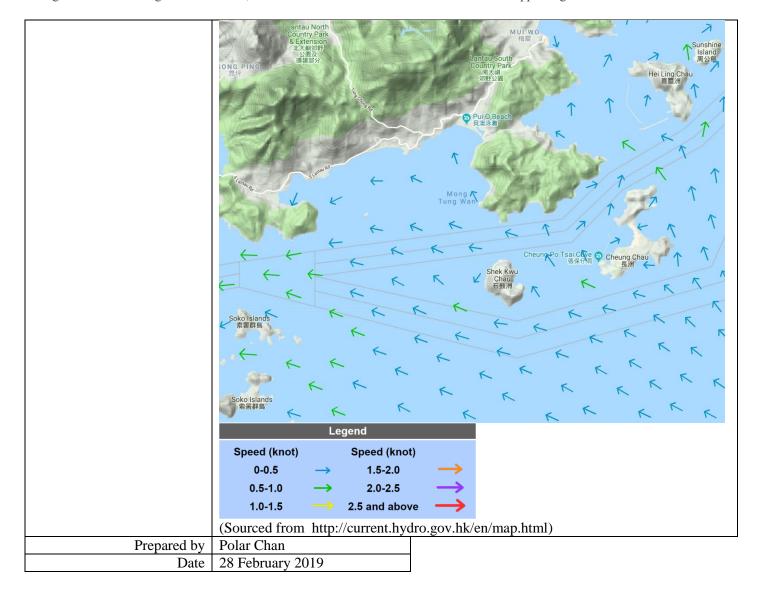
Page 1 of 4


Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
	\geq 8.7 mg/L (120% of average	e of UC1 &	\geq 9.4 mg/L (130% of average of UC1 &		
	UC2)		UC2)		
Measurement Level	Impact Station(s) of	Control Stations		Impact Station(s) without	
	Exceedance	Control Stations		Exceedance	
	9.5 mg/L (I2)	6.7 mg/L (U	JC1)	6.8 mg/L (I1)	
	9.3 mg/L (I3)	7.8 mg/L (U		7.3 mg/L (I4)	
	9.3 mg/L (I5)	7.0 mg/L (0	(0.02)	8.7 mg/L (I7)	
	9.2 mg/L (I6)			8.2 mg/L (I8)	
	7.2 mg/L (10)			7.3 mg/L (I9)	
				8.7 mg/L (I10)	
Possible reason for Action or	Works scheduled on site on	19/02 include	cand blanket lav		
	post cone penetration test wo			_	
Limit Level Non-compliance		JIK, DCIVI Sali	ipie cornig, DCN	I main works and DCM	
	plant trial.				
	Dania dia ana arawa dia a	C	1 4 - 1 - C N.	wil	
	Dominating sea current direct		a to be from No	rtnwest to Southeast at	
	waters around Shek Kwu Ch	au.			
	F 10/0 :: :	1 10/02	1010	1. DOM	
	From MMO monitoring reco				
	barges (ESC-61 & ESC-62)				
	that day while no deficiency	of silt curtain	was found before	re the start of construction	
	activity.				
		_			
	12, I3, I5 & I6 are located clo			· ·	
	curtain checking was implen			0 1	
	(10:30) and ESC-62 (00:00)	•		•	
	deficiency of silt curtain was found on that day. No sand blanket laying w				
	carried out on Cheung Kee N	•			
	suggest that SS exceedances are deemed to be unrelated to the Project.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the				
	weekly inspection, and the Contractor is remained to implement all applicable				
	mitigation measures as per the Updated EM&A Manual.				
	Mid-F				
Monitoring Location	I1 : A (N22°11.283 E113° 59	0.016)			
	I2 : B (N22°11.324 E113° 58.994)				
	I3 : C (N22°11.363 E113° 59.011)				
	I4 : D (N22°11.405 E113° 59	0.028)			
	I9: E (N22°11.453 E113° 58	.974)			
	22444			45	
	石鼓派 Shek Kwy Chau ラーも8 Miss 東京公司 東京公司 東京公司 東京公司 大学 History and Control of the Miss and Control of th				
	O per megyateo Wood Management For Others - Progre 1				
				+	
	Cont			_	
	Google			Image may be subject to copyright 200 m Terms of Use	

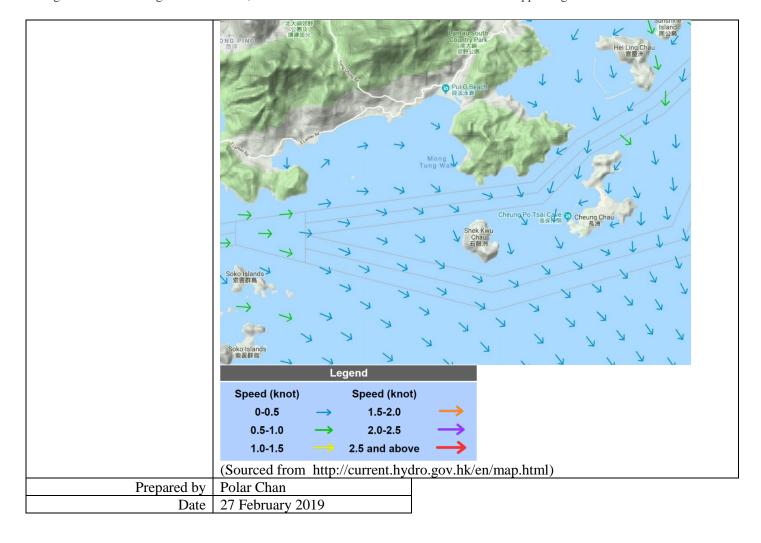




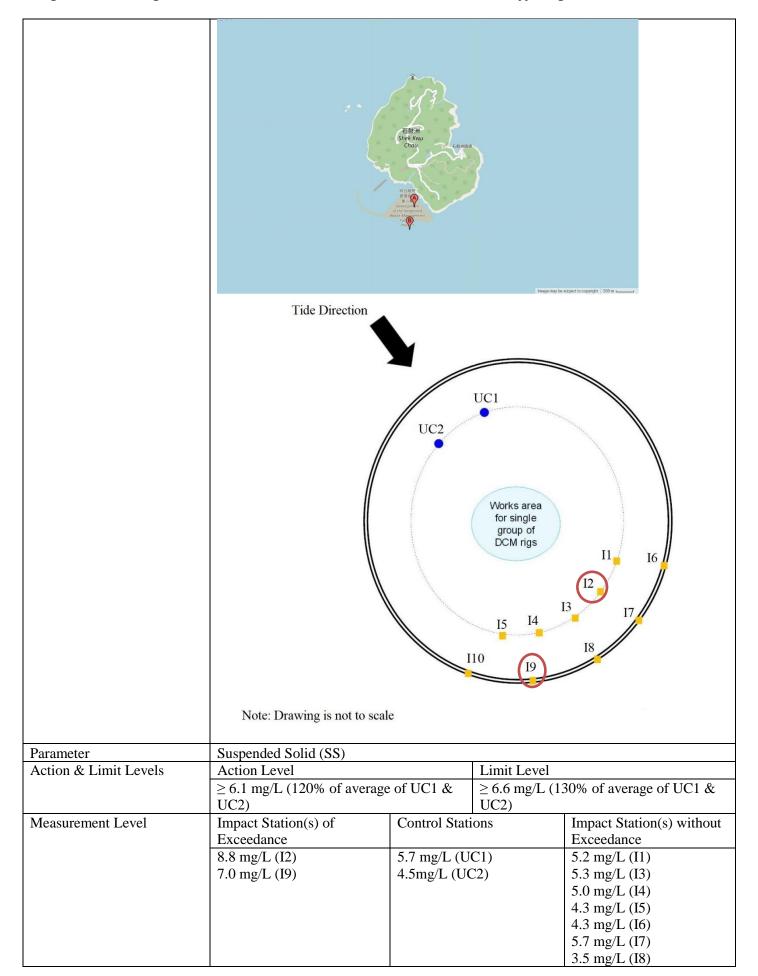

	UC2)	UC2)			
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without		
	Exceedance		Exceedance		
	9.5 mg/L (I9)	7.0 mg/L (UC1)	7.5 mg/L (I1)		
		6.7 mg/L (UC2)	7.7 mg/L (I2)		
			6.3 mg/L (I3)		
			4.8 mg/L (I4)		
			6.3 mg/L (I5)		
			6.2 mg/L (I6)		
			7.5 mg/L (I7) 7.8 mg/L (I8)		
			7.5 mg/L (18) 7.7 mg/L (110)		
Possible reason for Action or	Works scheduled on site on	20/02 include laying of geote			
Limit Level Non-compliance	Works scheduled on site on 20/02 include laying of geotextile at reclamation area, laying of sand blanket at caisson seawall area, post cone penetration test works, DCM sample coring, DCM main works and DCM plant trial.				
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.				
	From MMO monitoring records on 20/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barge (FTB-19 & Kam Ying No.8) on				
	that day while no deficiency of silt curtain was found before the start of construction activity.				
	I9 is located close to the works location within the Project site while silt curtain				
	checking was implemented on FTB-19 (08:00), Kam Ying No.8 (09:00), ESC-61				
) by the Contractor and checki			
	deficiency of silt curtain was found on that day. It might suggest that SS exceedance is				
	deemed to be unrelated to the				
Actions taken / to be taken		ntal performance of the Project			
	¥ 1	Contractor is remained to imp	lement all applicable		
	mitigation measures as per the Updated EM&A Manual.				
	Mid-l				
Monitoring Location	I1 : A (N22°11.454 E113°5 I2 : B (N22°11.459 E113°5				
		高数州 Shek Kwy Chau これ を を を を を の の の の の の の の の の の の の の	Image may be subject to copyright 200 m		



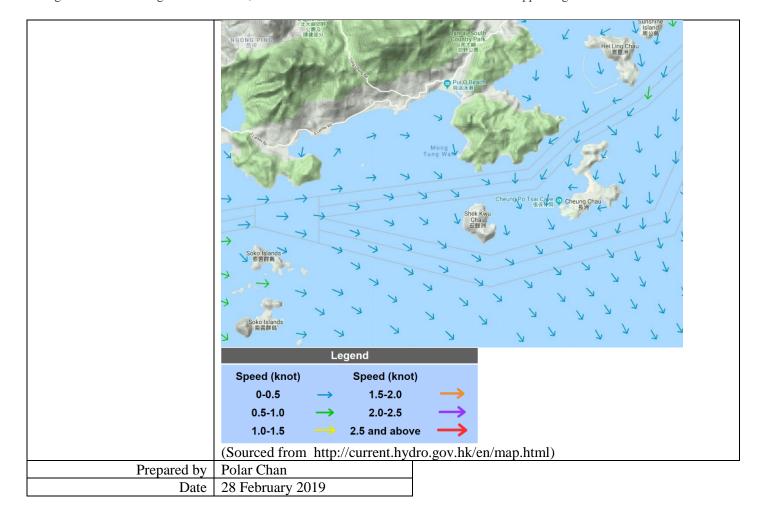
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
	≥ 5.4 mg/L (120% of average of UC1 &		\geq 5.9 mg/L (130% of average of UC1 &	
	UC2)		UC2)	
Measurement Level	Impact Station(s) of	Control Stati	ions	Impact Station(s) without
	Exceedance			Exceedance
	6.5 mg/L (I1)	2.5 mg/L (UC1)		2.0 mg/L (I2)
	5.5 mg/L (I3)	6.5 mg/L (U	C2)	3.7 mg/L (I5)
	6.2 mg/L (I4)			3.2 mg/L (I6)
	5.7 mg/L (I7)			5.2 mg/L (I8)
	5.7 mg/L (I10)			4.0 mg/L (I9)
Possible reason for Action or	Works scheduled on site on 2			
Limit Level Non-compliance	laying of sand blanket at cais		•	
	blockwork seawall area, post			
	Pre-construction Site Trial, D	CM sample co	oring for DCM	main works and DCM main
	works.			
	Dominating sea current direc		d to be from Sou	theast to Northwest at
	waters around Shek Kwu Chau.			
	From MMO monitoring records on 21/02, MMO teams were arrange barges (ESC-61 & ESC-62) and three derrick barges (DL-5, Kam Yi 19) on that day while no deficiency of silt curtain was found before t construction activity.		5, Kam Ying No.8 & FTB-	
Actions taken / to be taken	I1, I3, I4, I7 & I10 are located silt curtain checking was imp (07:00), ESC-61 (14:30) and results showed that no deficie compared to the baseline data 10mg/L), most of the monitor UC2) were relatively low, it I10 are deemed to be unrelated.	lemented on I Kam Ying No ency of silt cur a of dry seasor ring stations (i might suggest ed to the Project	DL5 (08:00), FT D.8 (16:30) by the tain was found in (Action Level: including upstreathat the SS except.	B19 (15:00), ESC-62 e Contractor and checking on that day. When 8mg/L & Limit Level: am control station UC1 and endance at I1, I3, I4, I7 &
Actions taken / to be taken	Examination of environmenta	•		•
	weekly inspection, and the Contractor is remained to implement all applicable			
	mitigation measures as per th	e Updated EM	I&A Manual.	
Remarks	Current direction during mid-	flood samplin	g on 21/02:	


Project	Integrated Waste Management Facilities, Phase 1	
Date	22 February 2019 (Lab result received on 27 February 2019)	
Time	08:00 - 10:22 (Mid-Flood)	
	Mid-Flood	
Monitoring Location	I1 : A (N22°11.348 E113° 58.937) I3 : B (N22°11.407 E113° 59.000) I4 : C (N22°11.407 E113° 59.038)	
	后版用 Shek Kwy Chau	subject to copyright 200 m =
	Note: Drawing is not to scale	Tide Direction
Parameter	Suspended Solid (SS)	
Action & Limit Levels	Action Level Limit Level	
Action & Limit Levels	ACTION LEVEL LIMIT LEVEL	

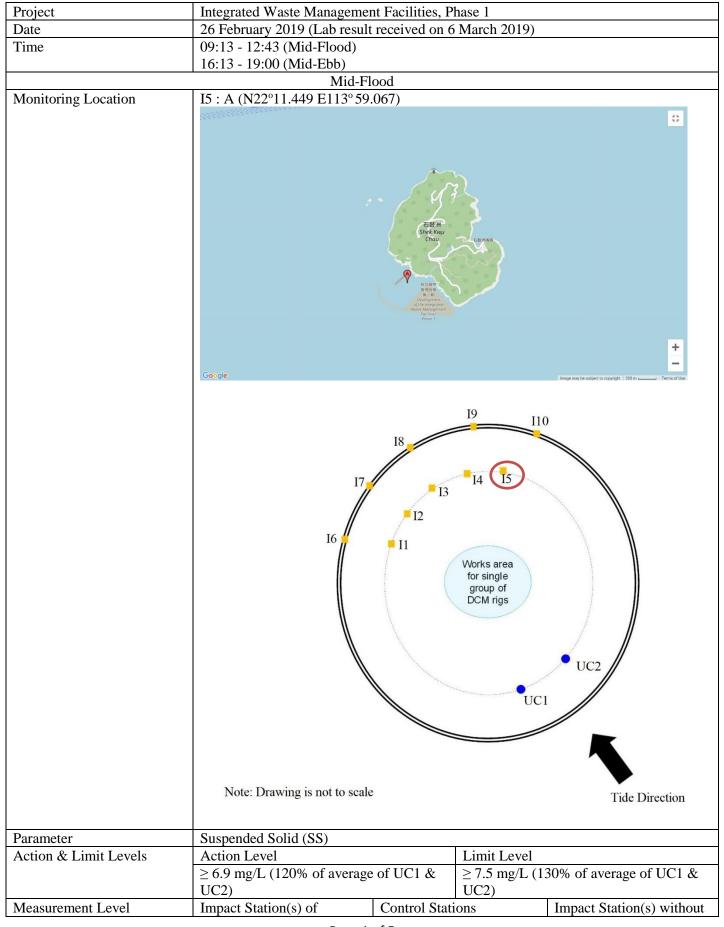
	\geq 2.6 mg/L (120% of average	e of UC1 &	\geq 2.8 mg/L (1	30% of average of UC1 &
	UC2)		UC2)	
Measurement Level	Impact Station(s) of	Control Stat	ions	Impact Station(s) without
	Exceedance			Exceedance
	2.7 mg/L (I1)	2.3 mg/L (U		2.0 mg/L (I2)
	4.2 mg/L (I3)	2.0mg/L (U	C2)	2.3 mg/L (I5)
	3.0 mg/L (I4)			2.5 mg/L (I6)
				2.5 mg/L (I7)
				2.5 mg/L (I8)
				2.2 mg/L (I9)
				2.0 mg/L (I10)
Possible reason for Action or	Works scheduled on site on 2			
Limit Level Non-compliance	laying of sand blanket at cais			
	sample coring for DCM main	n works and D	CM main works	S.
	Daningtin and time	·· 6	1 4 - 1 - C C	other and the NI and become at the
	Dominating sea current direc		a to be from Sol	itneast to Northwest at
	waters around Shek Kwu Cha	au.		
	From MMO monitoring records on 22/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Kam Ying No,8 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.			re arranged to two DCM
	activity.			
	I1, I3 & I4 are located close to the work location within the Project site while silt curtain checking was implemented on FTB19 (08:00), ESC-62 (07:00), ESC-61 (08:30) and Kam Ying No.8 (16:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. When compared to the			
				•
	baseline data of dry season (Action Level: 8mg/L & Limit Level: 10mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedance at I1, I3 & I4 are deemed to be			0 1
	unrelated to the Project.			-,
	Site tidiness in the present ba	rges in the Pr	oject site were c	hecked during weekly site
	inspection on 26/02, where w			
	might contribute to the increa			
Actions taken / to be taken	Examination of environmenta			
	weekly inspection, and the C	•	•	9
	mitigation measures as per th			1.1
Remarks	Current direction during mid-	•		
TOTAL IND	Carroni anocaon daring inid	mood sumpm	15 011 22/02.	


Project	Integrated Waste Management Facilities, Phase 1		
Date	23 February 2019 (Lab result received on 26 February 2019)		
Time	13:21 - 16:51 (Mid-Ebb)		
Monitoring Location	Mid-Ebb I7: A (N22°11.236 E113° 59.249) I9: B (N22°11.236 E113° 59.179)		
	Tide Direction Works area for single group of DCM rigs II II II II II II II III II		
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level Limit Level		
	\geq 4.3 mg/L (120% of average of UC1 & \geq 4.7 mg/L (130% of average of UC1 &		

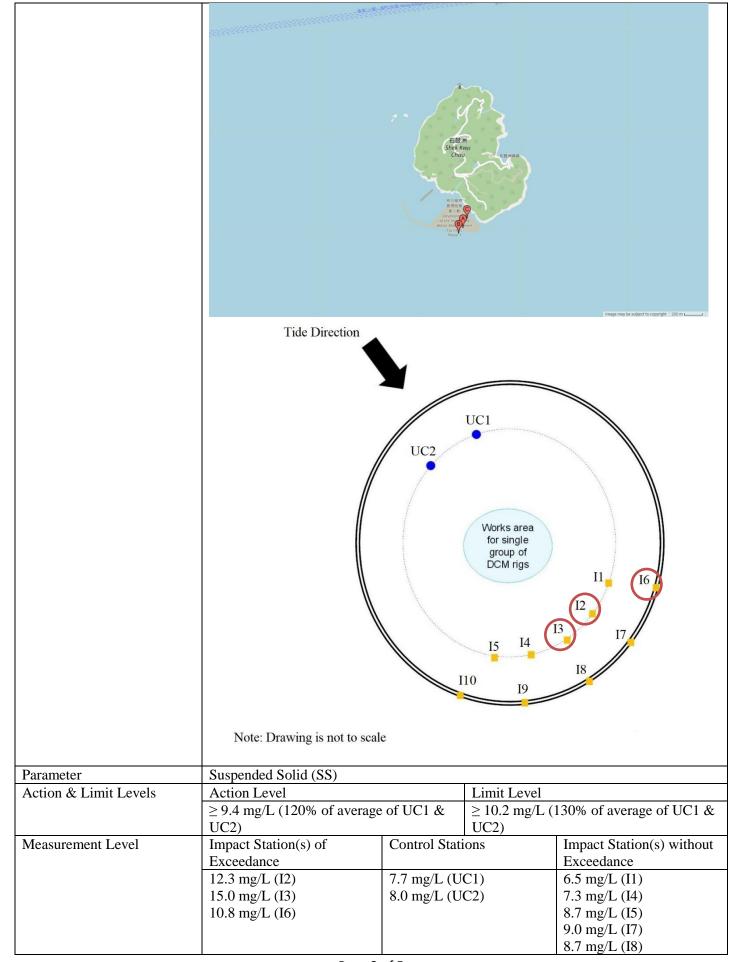
	UC2)		UC2)	
Measurement Level	Impact Station(s) of	Control Stati	ions	Impact Station(s) without
	Exceedance			Exceedance
	4.7 mg/L (I7)	3.5 mg/L (U	C1)	3.3 mg/L (I1)
	4.5 mg/L (I9)	3.7mg/L (UC	C2)	3.3 mg/L (I2)
				3.5 mg/L (I3)
				3.7 mg/L (I4)
				3.8 mg/L (I5)
				4.2 mg/L (I6)
				4.0 mg/L (I8)
				3.5 mg/L (I10)
Possible reason for Action or Limit Level Non-compliance Actions taken / to be taken	Works scheduled on site on 2 area, post cone penetration to seawall area, DCM sample of Dominating sea current direct waters around Shek Kwu Ch. From MMO monitoring reco barges (ESC-61 & ESC-62) a while no deficiency of silt curling to the checking was implemented of ESC-61 (08:00) by the Contrasilt curtain was found on that No.8 was carried out with refusaline data of dry season (at the monitoring stations (incluredatively low, it might sugges unrelated to the Project. Site tidiness in the present basinspection on 26/02, where we might contribute to the increase Examination of environment weekly inspection, and the C	est work, removering for DCM ention was found au. Inds on 23/02, I and two derrich entain was found the work location DL5 (15:15) eactor and cheek day. No sand ferring to site of Action Level: Suding upstream est that the SS entry are in the Provision of the P	wal of surface roll main works and to be from No. MMO teams we k barges (DL-5 and before the state on within the Project should be provided by the control station exceedance at I was observed of the Project of the P	re arranged to two DCM & FTB-19) on that day rt of construction activity. oject site while silt curtain object site while silt curtain object scheduled Kam Ying of Works
	mitigation measures as per th	ne Updated EM	I&A Manual.	
Remarks	Current direction during mid	-ebb sampling	on 23/02:	


Project	Integrated Waste Management Facilities, Phase 1		
Date	24 February 2019 (Lab result received on 27 February 2019)		
Time	08:00 - 11:27 (Mid-Flood)		
	14:03 - 17:33 (Mid-Ebb)		
	Mid-Flood		
Monitoring Location	I4 : A (N22°11.437 E113° 59.043)		
	I7 : B (N22°11.412 E113° 58.918)		
	Shek Kuyu Chau Sill British Sil		
	Note: Drawing is not to scale I9 I10 I10 Vorks area for single group of DCM rigs UC2 UC1 Tide Direction		
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level Limit Level		

	\geq 5.8 mg/L (120% of average	of UC1 &	•	30% of average of UC1 &
	UC2)		UC2)	
Measurement Level	Impact Station(s) of	Control Stat	ions	Impact Station(s) without
	Exceedance	4.0 / / / / /	C1)	Exceedance
	6.3 mg/L (I4)	4.8 mg/L (U		4.8 mg/L (I1)
	6.5 mg/L (I7)	4.8mg/L (U0	L2)	4.2 mg/L (I2)
				7.2 mg/L (I3) 5.7 mg/L (I5)
				5.7 mg/L (IS) 5.5 mg/L (I6)
				5.3 mg/L (I8)
				4.7 mg/L (I9)
				4.7 mg/L (19) 4.3 mg/L (110)
Possible reason for Action or	Works scheduled on site on 2	 	aving of sand bl	•
Limit Level Non-compliance	area, removal of surface rock			
Emili Level I (on compilance	for DCM main works and DC			area, Dew sample comig
	Dominating sea current direct		d to be from Sou	theast to Northwest at
	waters around Shek Kwu Chau.			
	From MMO monitoring records on 24/02, MMO teams were arranged to two DCM			
	barges (ESC-61 & ESC-62) and two derrick barges (DL-5 & FTB-19) on that day			
	while no deficiency of silt curtain was found before the start			
	I4 & I7 are located close to the	ne work locati	on within the Pro	oiect site while silt curtain
checking was implemented on DL5 (07:00), FTB19 (08:00). ESC-61 (08:15) by the Contractor and checking results show				
	silt curtain was found on that day. When compared to the baseline data of dry set (Action Level: 8mg/L & Limit Level: 10mg/L), most of the monitoring stations			
	(including upstream control s			
	suggest that the SS exceedance at I4 & I7 are deemed to be unrelated to the Project.			
	Site tidiness in the present barges in the Project site were checked during weekly site			
	inspection on 26/02, where was no major observation of improper site practice that			
	might contribute to the increa			
Actions taken / to be taken	Examination of environmenta			
	weekly inspection, and the Co	ontractor is re	mained to imple	ment all applicable
	mitigation measures as per th		I&A Manual.	
	Mid-E			
Monitoring Location	I2 : A (N22°11.339 E113° 59.			
	I6 : B (N22°11.204 E113° 59.	.219)		

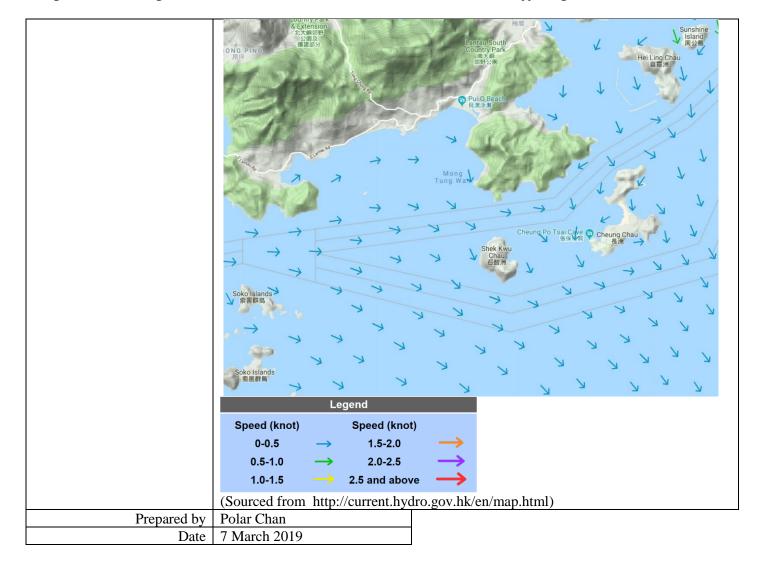

Page 3 of 5

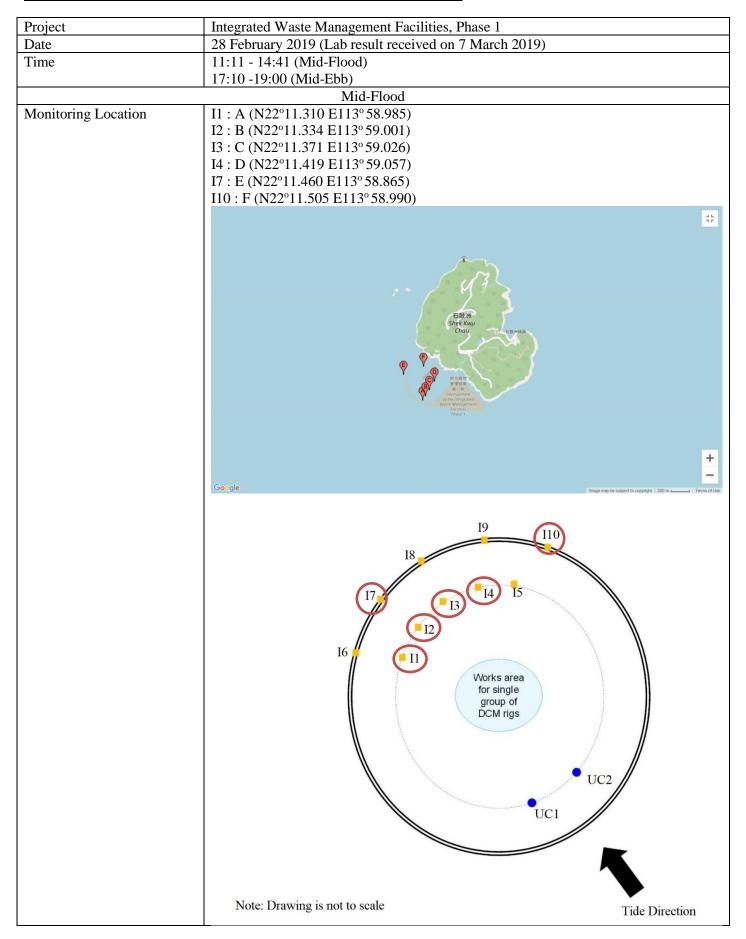
	6.0 mg/L (I10)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 24/02 include laying of sand blanket at caisson seawall area, removal of surface rock at vertical blockwork seawall area, DCM sample coring for DCM main works and DCM main works.
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.
	From MMO monitoring records on 24/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (DL-5 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.
	I2 & I9 are located close to the work location within the Project site while silt curtain checking was implemented on DL5 (07:00), FTB19 (08:00), ESC-62 (08:00) and ESC-61 (08:15) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. It might suggest that the SS exceedance at I2 & I9 are deemed to be unrelated to the Project.
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 26/02, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-flood sampling on 24/02: Sundame
	Current direction during mid-ebb sampling on 24/02:

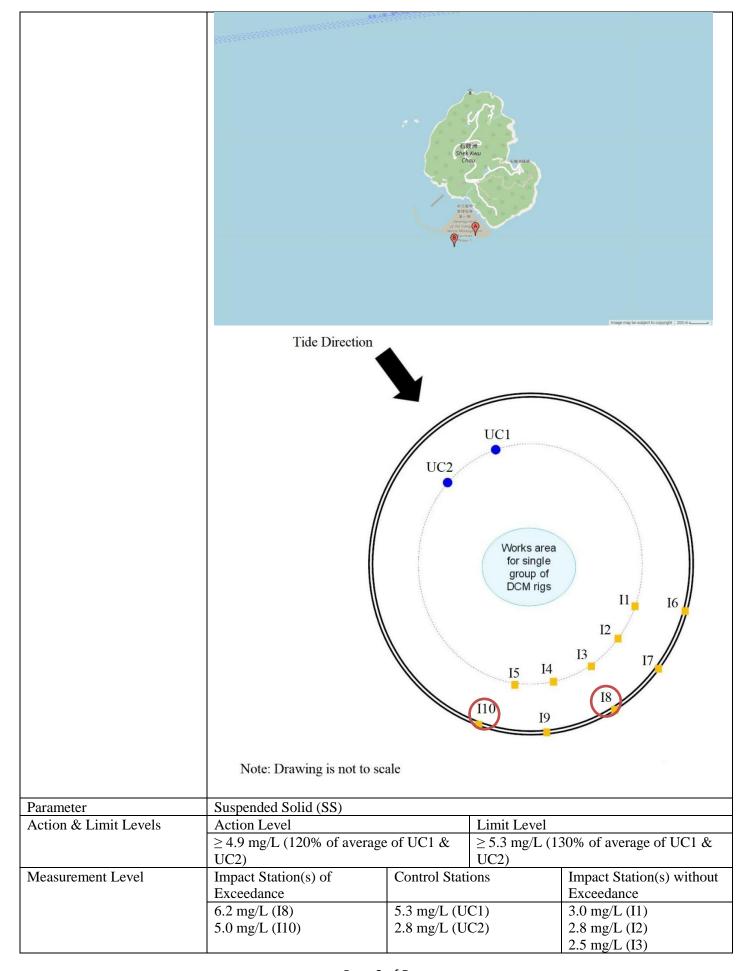


Project	Integrated Waste Management Facilities, Phase 1			
Date	25 February 2019 (Lab result received on 5 March 2019)			
Time	14:56 – 18:26 (Mid-Ebb)			
	Mid-Ebb			
Monitoring Location	+ B1	PROPOSED OUTFALL + A PROPOSED 132RV SUBMARINE CABLES S2 H1 SHEK KWU CHAU CR2 S3 CR1 PROPOSED RECLAIMED AREA FOR THE IMMF	Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
	\geq 9.2 mg/L (120% of C1)	\geq 10.0 mg/L ((130% of C1)	
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance	
	9.3 mg/L (CR2)	7.7 mg/L (C1) 7.5 mg/L (C2)	6.0 mg/L (B1) 5.8 mg/L (B2) 6.3 mg/L (B3) 5.8 mg/L (B4) 7.0 mg/L (F1) 4.3 mg/L (H1) 7.0 mg/L (M1) 7.5 mg/L (CR1)	
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 2 caisson seawall area, remova DCM sample coring for DCM	l of surface rock at vertical bl M main works and DCM main	ockwork seawall area, n works.	
	Dominating sea current direct waters around Shek Kwu Charles From MMO monitoring record barges (ESC-61 & ESC-62) at on that day while no deficient construction activity. CR2 is located close to the water checking implemented on DI	au. rds on 25/02, MMO teams we and three derrick barges (FTB cy of silt curtain was found be rorks location within the Projection.	ere arranged to two DCM i-19, DL5 & Shun Tat D12) efore the start of	

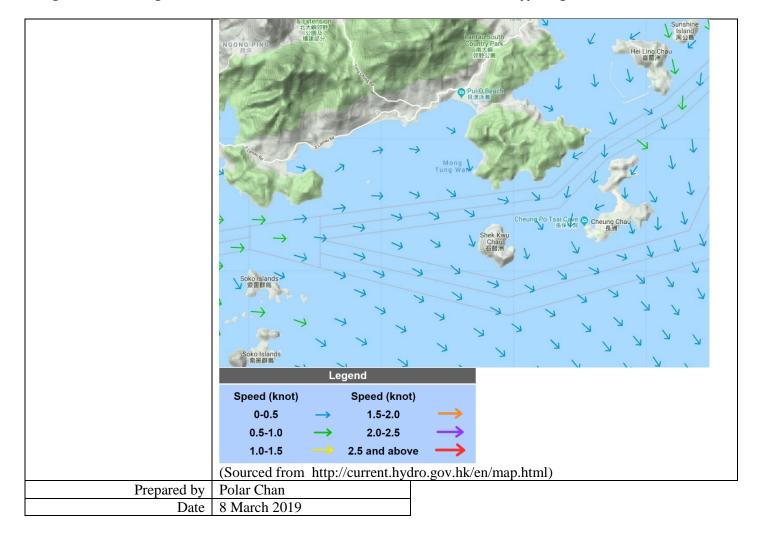
	19 (07:00) & ESC-61 (08:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying work scheduled in Cheung Kee No.7 was carried out with referring to the site diary on that day. It might suggest that the SS exceedance at CR2 is deemed to be unrelated to the Project. Site tidiness in the present barges in the Project site were checked during weekly site inspection on 26/02, where was no major observation of improper site practice that	
	might contribute to the increase in SS level was observed during the inspection.	
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.	
Remarks	Current direction during mid-ebb sampling on 25/02: Control South Control	
	1.0-1.5 — 2.5 and above —	
	(Sourced from http://current.hydro.gov.hk/en/map.html)	
Prepared by	Polar Chan	
Date	6 March 2019	




	Exceedance		Exceedance
	7.3 mg/L (I5)	4.8 mg/L (UC1)	5.8 mg/L (I1)
		6.7mg/L (UC2)	5.3 mg/L (I2)
			3.0 mg/L (I3)
			6.3 mg/L (I4)
			5.7 mg/L (I6)
			4.7 mg/L (I7)
			4.7 mg/L (I8)
			3.2 mg/L (I9)
			6.0 mg/L (I10)
Possible reason for Action or	Works scheduled on site on 2	26/02 include laying of geotex	ttile at caisson seawall area,
Limit Level Non-compliance		son seawall area, removal of	
	blockwork seawall area, post	cone penetration test works,	DCM sample coring for
	DCM main works and DCM	main works.	
	-	tion was found to be from So	utheast to Northwest at
	waters around Shek Kwu Cha	au.	
	•	rds on 26/02, MMO teams we	•
	barges (ESC-61 & ESC-62) and three derrick barges (DL-5, Shun Tat D12 & FTB-19)		
	on that day while no deficiency of silt curtain was found before the start of		
	construction activity.		
	Is is located along to the world	Ir location within the Ducient o	ita vuhila ailt aumtain
		k location within the Project s	
		on DL5 (09:00), FTB19 (20:30	
	(07:00) and Shun Tat D12 (15:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. When compared to the baseline		
	<u> </u>	evel: 8mg/L & Limit Level: 1	•
	II	g upstream control station UC	•
	_	SS exceedance at I5 is deeme	-
	Project.	55 excecuance at 15 is deeme	ed to be unrelated to the
	Troject.		
	Site tidiness in the present ba	arges in the Project site were c	hecked during weekly site
	_	vas no major observation of in	
	_	ase in SS level was observed of	
Actions taken / to be taken		al performance of the Project	
		ontractor is remained to imple	· ·
	mitigation measures as per th	_	inon un approuoie
	Mid-E		
Monitoring Location	I2 : A (N22°11.276 E113° 59		
Monitoring Location	I3 : B (N22°11.242 E113° 59.	The state of the s	
	•	*	
	I6 : C (N22°11.331 E113° 59.	.404)	


Page 3 of 5

	6.3 mg/L (I9)		
Possible reason for Action or	9.0 mg/L (I10)		
Limit Level Non-compliance	Works scheduled on site on 26/02 include laying of geotextile at caisson seawall area, laying of sand blanket at caisson seawall area, removal of surface rock at vertical		
Emili Level Non-compliance	blockwork seawall area, post cone penetration test works, DCM sample coring for		
	DCM main works and DCM main works.		
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.		
	From MMO monitoring records on 26/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and three derrick barges (DL-5, Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.		
	I2, I3 & I6 are located close to the work location within the Project site while silt curtain checking was implemented on DL5 (09:00), FTB19 (20:30), ESC-62 (10:00), ESC-61 (07:00) and Shun Tat D12 (15:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day.		
	Site tidiness in the present barges in the Project site were checked during weekly site		
	inspection on 26/02, where was no major observation of improper site practice that		
	might contribute to the increase in SS level was observed during the inspection.		
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the		
	weekly inspection, and the Contractor is remained to implement all applicable		
	mitigation measures as per the Updated EM&A Manual.		
Remarks	Current direction during mid-flood sampling on 26/02:		
	Selection 相区 Selection		
	郊野公園 富靈洲 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑		
	D. Filliobedull 東海湖		
	Mong A Tung Wan		
	Tung Wan		
	Cheung Po Tsai Cave C Cheung Chau		
	- Soko Islands R R R R R R R R R R R R R R R R R R R		
	常理群場		
	Soko Islands		
	Current direction during mid-ebb sampling on 26/02:		



Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
	\geq 4.2 mg/L (120% of average	e of UC1 &		30% of average of UC1 &	
	UC2)		UC2)		
Measurement Level	Impact Station(s) of	Control Stat	ions	Impact Station(s) without	
	Exceedance			Exceedance	
	5.8 mg/L (I1)	2.7 mg/L (UC1)		3.2 mg/L (I5)	
	4.7 mg/L (I2)	4.3 mg/L (UC2)		2.7 mg/L (I6)	
	4.2 mg/L (I3)			3.0 mg/L (I8)	
	5.5 mg/L (I4)			3.2 mg/L (I9)	
	4.7 mg/L (I7)				
	4.7 mg/L (I10)			1	
Possible reason for Action or	Works scheduled on site on 2				
Limit Level Non-compliance	laying of sand blanket at cais				
	sample coring for DCM main	n works and D	CM main works	S.	
	Dominating sag aureant direct	ntion was foun	d to be from Co	uthanst to Northwest at	
	Dominating sea current direct		u to be from So	unleast to Northwest at	
	waters around Shek Kwu Chau.				
	From MMO monitoring reco	ords on 28/02	MMO teams we	ere arranged to two DCM	
	From MMO monitoring records on 28/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction				
	activity.				
	I1, I2, I3, I4, I7 & I10 are loo	cated close to t	the work locatio	n within the Project site	
	while silt curtain checking was implemented on FTB19 (07:00), ESC-62 (7:00), ESC-				
	61 (07:00) and Shun Tat D12	2(08:30) by th	e Contractor an	d checking results showed	
		f silt curtain was found on that day. When compared to the			
			•	mit Level: 10mg/L), most of	
	the monitoring stations (included)				
	relatively low, it might sugge		exceedance at I	1, I2, I3, I4, I7 & I10 are	
	deemed to be unrelated to the Project.				
	Site tidiness in the present houses in the Duniest site were abouted during any literature				
	Site tidiness in the present barges in the Project site were checked during weel				
	inspection on 26/02, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the				
1 chons taken / to be taken					
	weekly inspection, and the Contractor is remained to implement all applicable				
	mitigation measures as per the Updated EM&A Manual.				
Mid-Ebb					
Monitoring Location	18 : A (N22°11.261 E113° 59.272)				
	I10 : B (N22°11.195 E113° 59.137)				

	3.3 mg/L (I4)					
	4.8 mg/L (I5)					
	3.8 mg/L (I6)					
	3.5 mg/L (I7)					
	3.8 mg/L (I9)					
Possible reason for Action or	Works scheduled on site on 28/02 include laying of geotextile at caisson seawall area,					
Limit Level Non-compliance	laying of sand blanket at caisson seawall area, post cone penetration test works, DCM					
	sample coring for DCM main works and DCM main works.					
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.					
	From MMO monitoring records on 28/02, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and two derrick barges (Shun Tat D12 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.					
	I8 & I10 are located close to the work location within the Project site while silt curtain checking was implemented on FTB19 (07:00), ESC-62 (7:00), ESC-61 (07:00) and Shun Tat D12 (08:30) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. When compared to the baseline data of dry season (Action Level: 8mg/L & Limit Level: 10mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedance at I8 & I10 are deemed to be unrelated to the Project.					
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 26/02, where was no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.					
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the					
	weekly inspection, and the Contractor is remained to implement all applicable					
	mitigation measures as per the Updated EM&A Manual.					
Remarks	Current direction during mid-flood sampling on 28/02: Noone pine Control part Control pa					
	Current direction during mid-ebb sampling on 28/02:					

Contract No. EP/SP/66. Integrated Waste Management	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix O	Complaint Log	

Statistical Summary of Environmental Complaints

Reporting	Environmental Complaint Statistics				
Period	Frequency	Cumulative	Complaint Nature		
1 Feb 2019- 28 Feb 2019	0	0	N/A		

Statistical Summary of Environmental Summons

Reporting	Environmental Summons Statistics				
Period	Frequency	Cumulative	Details		
1 Feb 2019- 28 Feb 2019	0	0	N/A		

Statistical Summary of Environmental Prosecution

Reporting	Environmental Prosecution Statistics			
Period	Frequency	Cumulative	Details	
1 Feb 2019-	0	0	N/A	
28 Feb 2019				

Contract No. EP/SP/66/ Integrated Waste Manag	/12 gement Facilities, Phase 1	Keppel Seghers – Zhen Hua Joint Venture
Appendix P	Impact Monitoring Schedul Month	e of Next Reporting

Impact Monitoring Schedule for IVMMF					
Marci 9					
Sun Mon 1	Tue	Wed	Thu	Fri	Sat
				Impact Water Quality monitoring for 81, 82, 83, 84, H1, C1, C2, F1, M1, CR1 & CR2 IIII of Level 1000 Floot Tode: 1009 - 1751 Monitoring Time: *5 Mid-ebb: 08.45 - 1004 Mid-90b: 1215 - 1545 Ecology monitoring for Land-based Theodolite Tracking & Passive Acoustic Monitoring	Impact Impact
Impact	Impact Ecology monitoring for Land-based Theodolite Tracking & Passive Acoustic Monitoring	impact i	Impact Ecology monitoring for WBSE Ecology monitoring for Land-based Headolite Tracking & Passive Acoustic Monitoring	impact water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, M1, CR1 & CR2 @ Intensive DCM monitoring for UC1, UC2, I1, I12, I3, I4, I5, I6, I7, I8, I9 & I10 Intensive DCM monitoring for UC1, UC2, I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10 Intensive DCM monitoring Intensive In	
Ecology monitoring for Land-based Theodolite Tracking & Passive Acoustic Monitoring 10 11 Impact Impact @ Intensive DCM monitoring for UCI, UC2, II, I2, I3, I4, I5, I5, I7, I8, I9 & Water Quality monitoring for I5, I2, 28, 34, HI, CI, C2, F3, CR1, CR2, M1,	Impact Ecology monitoring for Land-based Theodolite Tracking & Passive	Acoustic Monitoring 13 Impact Water Quality monitoring for 81, 82, 83, 84, H1, C1, C2, F1, CR1, CR2, M1,	Impact Ecology monitoring for Land-based Theodolite Tracking & Passive	Acoustic Monitoring 15 Impact Water Quality monitoring for 81, 82, 83, 84, H1, C1, C2, F1, CR1, CR2, M1,	16
10 Total Period: 15	Acoustic Monitoring	S1, 52 & 33 Tidal Period: Eb Inde: 12:45 - 20:30 Flood Tide: 03:68 - 12:45 Monitoring Time: Mid-ebb: 14:57 - 13:27 Ecology monitoring for Land-based Theodolite Tracking & Passive Acoustic Monitoring	Acoustic Monitoring	S1, 32 & 53 TIME Present. TEBH Present.	
17 18 1	19	20	21	22	23
Water Quality monitoring for 81, 82, 83, 84, HI, C1, C2, F1, CR1, CR2, M1, 51, 52, 83 3 THE PROPERTY OF THE P		Water Quality monitoring for Bl. 82, 83, 84, HJ, CJ, CJ, FJ, CRJ, CRZ, MJ, SJ, SS &	impact Ecology monitoring for Land-based Theodolite Tracking & Passive Acoustic Monitoring	Water Quality monitoring for Bi, B2, B3, B4, H1, C1, C2, F1, CR1, CR2, M1, S1, S2 & S3 Table Period. Table Period. The Carlot Service Servi	
24 25 Impact	26 Impact	27 Impact	28 Impact	29 Impact	30
Water Quality monitoring for \$1, \$2, \$2, \$3, \$4, \$1, \$4, \$7, \$6, \$7, \$6, \$1, \$2, \$3, \$3, \$1, \$2, \$4, \$3, \$1, \$2, \$4, \$1, \$1, \$2, \$4, \$1, \$1, \$2, \$4, \$1, \$2, \$4, \$1, \$2, \$4, \$1, \$2, \$4, \$2, \$4, \$4, \$4, \$4, \$4, \$4, \$4, \$4, \$4, \$4	Ecology monitoring for WRSE Ecology monitoring for Land hased The doublite Tracking & Passive Acoustic Monitoring Acoustic Monitoring	Water Quality monitoring for Bi, B2, B3, B4, H3, C1, C2, F1, CR1, CR2, M1, S1, S2, S3, S4, S3, S4, S4, S4, S4, S4, S4, S4, S4, S4, S4			
31					

Remarks:
1. Daytime Noise Monitoring (87:00-1500), Evening Time Noise Monitoring (1900-2300), Night Time Noise Monitoring (2300-0700)
2. Water Quality Monitoring for S1,52 and S3 will only conduct during DCM works, refer to Detailed DCM Plan

Note:
- as per Murine Department Notice No 107 of 2018, all vessels employed for the works should stay in the works area outside the hours of works (0700 to 2000). Due to safty concern, Water Quality Monitoring would start at 0800.
- Prioritized routing: Mid-Eibc (1-435-062-0614-041-08emaning stations and Mid-Flood: C1-2461-451-062-0614-08emaning stations on the safty of the saft